

T.R. MINISTRY OF AGRICULTURE AND FORESTRY GENERAL DIRECTORATE OF WATER MANAGEMENT

Water Efficiency Guidance Documents Series

SPORTS ACTIVITIES

NACE CODE: 93.12

ANKARA 2023

It was commissioned by the Ministry of Agriculture and Forestry, General Directorate of Water Management to the Contractor io Çevre Çözümleri R&D Ltd. Şti.

All rights reserved.

This document and its contents may not be used or reproduced without the permission of the General Directorate of Water Management.

Contents

	Abbreviations	4
1	Introduction	5
2	Scope of the Study	8
2.1	Activities of Sports Clubs	10
2.1.1	Sector Specific Measures	14
2.1.2	Good Management Practices	16
2.1.3	Measures in the nature of General Measures	20
	Referances	24

Abbreviations

WWTP	Wastewater Treatment Plant
EU	European Union
SS	Suspended Solid Matter
BREF	Best Available Techniques Reference Document
EMS	Environmental Management System
MoEUCC	Republic of Türkiye Ministry of Environment, Urbanisation and Climate Change
NOM	Natural Organic Matter
EMAS	Eco-Management and Audit Programme Directive
EPA	United States Environmental Protection Agency
IPPC	Industrial Pollution Prevention and Control
ISO	International Standards Organisation
BAT	Best Available Techniques
NACE	Statistical Classification of Economic Activities
GDWM	General Directorate of Water Management
RO	Reverse Osmosis
MoAF	Republic of Türkiye Ministry of Agriculture and Forestry
TUIK	Turkish Statistical Institute
NF	Nanofiltration
MF	Microfiltration
UF	Ultrafiltration
GW	Groundwater
SW	Surface Water

1 Introduction

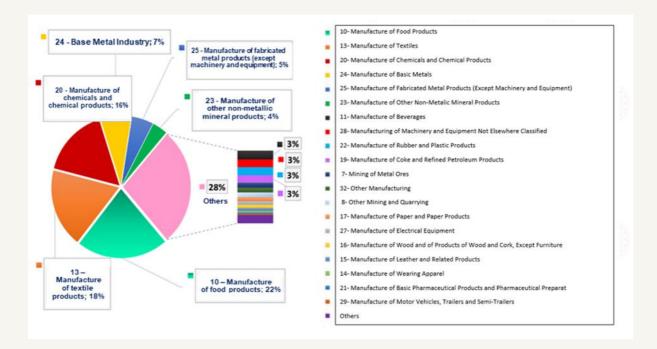
Our country is located in the Mediterranean basin, where the effects of global climate change are felt intensely, and is considered to be among the regions that will be most affected by the negative effects of climate change. Projections on how our water resources in our basins will be affected in the future due to climate change show that our water resources may decrease by up to 25 per cent in the next hundred years.

For the year 2022, the annual amount of water available per capita in Türkiye is 1,313 m³, and it is expected that the annual amount of water available per capita will fall below 1,000 cubic metres after 2030 due to human pressures and the effects of climate change. If the necessary measures are not taken, it is obvious that Türkiye will become a country suffering from water scarcity in the very near future and will bring many negative social and economic consequences. As can be understood from the results of future projections, the risk of drought and water scarcity awaiting our country necessitates the efficient and sustainable use of our existing water resources.

The concept of water efficiency can be defined as "using the least amount of water in the production of a product or service". The water efficiency approach is based on the rational, sharing, equitable, efficient and effective use of water in all sectors, especially in drinking water, agriculture, industry and household use, in a way that protects water in terms of quantity and quality and takes into account not only the needs of humans but also the needs of all living things with ecosystem sensitivity.

With the increasing demand for water resources, the change in precipitation and temperature regimes as a result of climate change, the increase in population, urbanisation and pollution, the fair and balanced distribution of usable water resources among users is becoming more and more important every day. For this reason, it has become a necessity to create a road map based on efficiency and optimisation in order to protect and use limited water resources through sustainable management practices.

In the vision of sustainable development set by the United Nations, *Goal 7: Ensuring Environmental Sustainability* from the Millennium Development Goals and *Goal 9: Industry, Innovation and Infrastructure* and *Goal 12: Responsible Production and Consumption* from the Sustainable Development Goals include issues such as efficient, fair and sustainable use of resources, especially water, environmentally friendly production and consumption with the concern of future generations.


In the European Green Deal Action Plan prepared by our country within the scope of the European Green Deal Action Plan, in which member countries agreed on the objectives such as implementing a clean, circular economy model with a carbon neutral target, expanding the efficient use of resources and reducing environmental impacts, actions emphasising water and resource efficiency in production and consumption in various fields, especially in industry, have been determined.

The "Industrial Emissions Directive (IED)", which is one of the most important components of the European Union environmental legislation in terms of industry, includes measures to be taken for the control, prevention or reduction of discharges/emissions from industrial activities to the receiving environment, including air, water and soil, with an integrated approach. In the Directive, Best Available Techniques (BAT) are presented in order to systematise the applicability of cleaner production processes and to eliminate difficulties in implementation. BATs are the most effective implementation techniques for a high level of environmental protection, taking into account their costs and benefits. In accordance with the Directive, Reference Documents (BAT-BREF) have been prepared for each sector in which BATs are explained in detail. In BREF documents, BATs are presented in a general framework such as good management practices, techniques as general measures, chemical use and management, techniques for various production processes, wastewater management, emission management and waste management.

The Ministry of Agriculture and Forestry, General Directorate of Water Management carries out activities aimed at disseminating efficient practices in urban, agricultural, industrial and individual water use and raising social awareness. Water efficiency action plans addressing all sectors and stakeholders were prepared within the scope of *the "Water Efficiency Strategy Document and Action Plan (2023-2033) within the Framework of Adaptation to a Changing Climate"*, which entered into force with the Presidential Circular No. 2023/9. In the Industrial Water Efficiency Action Plan, a total of 12 actions have been determined for the period 2023-2033 and responsible and relevant institutions have been assigned for these actions. Within the scope of the Action Plan, the General Directorate of Water Management is responsible for carrying out studies to determine specific water use ranges and quality requirements on the basis of sub-sectors in industry, organising technical training programmes and workshops on sectoral basis and preparing water efficiency guidance documents.

On the other hand, with the "Industrial Water Use Efficiency Project by NACE Codes" carried out by the General Directorate of Water Management of the Ministry of Agriculture and Forestry, the best sectoral techniques specific to our country were determined within the scope of studies on improving water efficiency in industry. As a result of the study, sectoral guidance documents and action plans categorised by NACE codes, including the measures recommended for improving water use efficiency in sectors with high water consumption operating in our country, were prepared.

As in the world, the sectors with the highest share in water consumption in our country are food, textile, chemical and basic metal sectors. Within the scope of the studies, field visits were carried out in enterprises representing 152 sub-sectors in 35 main sectors, especially food, textile, chemical, basic metal industry, which represent production areas with different capacities and diversity within the scope of NACE Codes operating in our country and with high water consumption, and data on water supply, sectoral water use, wastewater generation, recycling were obtained and information was provided on the best available techniques (BAT) and sectoral reference documents (BREF) published by the European Union, water efficiency, clean production, water footprint, etc.

Sectoral distribution of water use in industry in Türkiye

As a result of the studies, specific water consumption and potential saving rates for the processes of enterprises for 152 different 4-digit NACE codes with high water consumption were determined, and water efficiency guidance documents were prepared by taking into account the EU best available techniques (BAT) and other cleaner production techniques. Within the guidelines, 500 techniques (BAT) for water efficiency;

(i) Good Management Practices, (ii) General Measures, (iii) Measures Related to Auxiliary Processes and (iv) Sector Specific Measures.

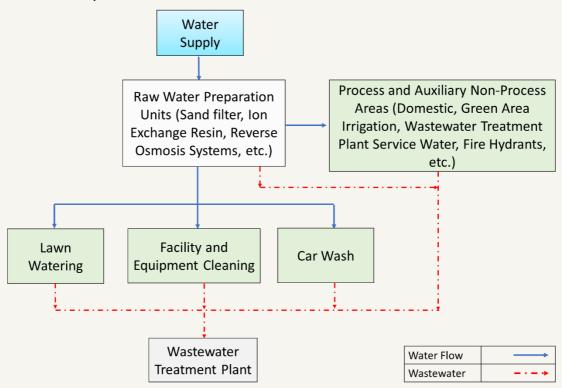
Within the scope of the project, environmental benefits, operational data, technical specifications-requirements and applicability criteria were taken into consideration during the determination of BATs for each sector. In the determination of BATs, not only BREF documents were not limited, but also different data sources such as current literature data on a global scale, real case analyses, innovative practices, reports of sector representatives were examined in detail and sectoral BAT lists were created. In order to evaluate the suitability of the BAT lists created for the local industrial infrastructure and capacity of our country, the BAT lists prepared specifically for each NACE code were prioritised by the enterprises by scoring them on the criteria of water saving, economic savings, environmental benefit, applicability, cross-media impact and the final BAT lists were determined using the scoring results. Water and wastewater data of the facilities visited within the scope of the project and the final BAT lists, which were prioritised by sectoral stakeholders and determined by taking into account the local dynamics specific to our country, were used to create sectoral water efficiency guides on the basis of NACE code.

2 Scope of the Study

Guidance documents prepared within the scope of water efficiency measures in industry cover the following main sectors:

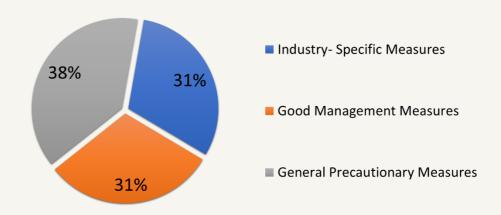
- Crop and animal production and hunting and related service activities (including subproduction area represented by 6 four-digit NACE codes)
- Fisheries and aquaculture (including sub-production area represented by 1 four-digit NACE Code)
- Coal and lignite extraction (including sub-production area represented by 2 four-digit NACE codes)
- Service activities in support of mining (including sub-production area represented by 1 four-digit NACE Code)
- Metal ores mining (including the sub-production area represented by 2 four-digit NACE codes)
- Other mining and quarrying (including the sub-production area represented by 2 four-digit NACE codes)
- Manufacture of food products (including 22 sub-production areas represented by four-digit NACE codes)
- Manufacture of beverages (including the sub-production area represented by 4 four-digit NACE codes)
- Manufacture of tobacco products (including sub-production area represented by 1 four-digit NACE Code)
- Manufacture of textile products (including 9 sub-production areas represented by four-digit NACE codes)
- Manufacture of articles of clothing (including sub-production area represented by 1 four-digit NACE Code)
- Manufacture of leather and related products (including sub-production area represented by 3 four-digit NACE codes)
- Manufacture of wood, wood products and cork products (except furniture); manufacture of articles made of thatch, straw and similar materials (including sub-production area represented by 5 four-digit NACE Codes)
- Manufacture of paper and paper products (including sub-production area represented by 3 four-digit NACE codes)
- Manufacture of coke and refined petroleum products (including sub-production area represented by 1 four-digit NACE Code)
- Manufacture of chemicals and chemical products (including 13 sub-production areas represented by four-digit NACE codes)
- Manufacture of basic pharmaceutical products and pharmaceutical ingredients (including sub-production area represented by 1 four-digit NACE Code)
- Manufacture of rubber and plastic products (including sub-production area represented by 6 four-digit NACE codes)
- Manufacture of other non-metallic mineral products (including 12 sub-production areas represented by four-digit NACE codes)
- Basic metal industry (including 11 sub-production areas represented by four-digit NACE codes)
- Manufacture of fabricated metal products (except machinery and equipment) (including 12 sub-production areas represented by four-digit NACE codes)
- Manufacture of computers, electronic and optical products (including sub-production area represented by 2 four-digit NACE codes)
- Electrical equipment manufacturing (including sub-production area represented by 7 four-digit NACE codes)

- Manufacture of machinery and equipment not elsewhere classified (including subproduction area represented by 8 four-digit NACE codes)
- Manufacture of motor vehicles, trailers (semi-trailers) and semi-trailers (semi-trailers) (including sub-production area represented by 3 four-digit NACE codes)
- Manufacture of other transport equipment (including sub-production area represented by 2 four-digit NACE codes)
- Other manufacturing (including 2 sub-production areas represented by four-digit NACE codes)
- Installation and repair of machinery and equipment (including sub-production area represented by 2 four-digit NACE codes)
- Electricity, gas, steam and ventilation system production and distribution (including subproduction area represented by 2 four-digit NACE codes)
- Waste collection, reclamation and disposal activities; recovery of materials (including sub-production area represented by 1 four-digit NACE Code)
- Construction of non-building structures (including sub-production area represented by 1 four-digit NACE Code)
- Warehousing and supporting activities for transport (including sub-production area represented by 1 four-digit NACE Code)
- Tourism Activities (Accommodation) (including sub-production area represented by 1 four-digit NACE Code)
- Educational Activities (Higher Education Campuses) (including sub-production area represented by 1 four-digit NACE Code)
- Sporting activities, leisure and recreation activities (including sub-production area represented by 1 four-digit NACE Code)


Sports, Entertainment and Recreation Activities

The sub-production branches for which guidance documents have been prepared under the sports activities, entertainment and recreation activities sector are as follows

93.12 Activities of sports clubs


2.1 Activities of Sports Clubs (NACE 93.12)

Sports Clubs' Activities Sector Water Flow Chart

	Minimum	Maximum
Specific Water Consumption of the Facilities Visited within the Scope of the Project (I/person.year)	45	
Reference Specific Water Consumption (L/person.year)		rence specific water umption.

Percentage Distribution of Water Efficiency Applications

A significant portion of the water consumed in the activities of sports clubs is used in lawn irrigation and ground cleaning. There is a significant increase in domestic water consumption especially on the days when sports competitions are held. In addition to these, water consumption for vehicle washing is also realised.

Water is generally supplied from municipal networks in the facilities. It is also possible to provide water supply with rainwater drainage systems in sports clubs. Rainwater is utilised for lawn irrigation. If there are raw water preparation units such as activated carbon filter, ion exchange resin, reverse osmosis used in soft water production, significant water consumption is also realised for filter washing, resin regeneration and membrane cleaning processes.

Automated systems are used in sports clubs where lawn irrigation is performed. Grass irrigation routine and irrigation method should be determined by agricultural engineers and the frequency and amount of irrigation should be programmed. Turf field inspectors/specialists should be employed in sports clubs. Irrigation activities should not be carried out during sunny periods of the day when the temperature is the highest, on the contrary, they should be carried out in the evening/night hours when evaporation is minimum.

There is no reference specific water consumption value in the activities of sports clubs sector. The specific water consumption of the production branch analysed within the scope of the study is 45 L/person.year. With the implementation of sector-specific techniques, good management practices and general measures, it is possible to achieve water savings of 10 - 17% in the sector.

93.12 Activities of Sports Clubs Priority water efficiency implementation techniques recommended under the NACE code are presented in the table below.

NACE Code	NACE Code Description		Prioritised Sectoral Water Efficiency Techniques	
93.12			Sector Specific Measures	
	sqr	1.	To minimise evaporation, green areas should be irrigated during the hours when evaporation is lowest	
	s cl	2.	Use of combination ovens instead of steam cookers	
	sports	3.	Replacement of old and inefficient pre-rinse spray valves used in dishwashers with efficient ones	
	o ę	4.	Use of pedal taps or sensor taps in kitchens	
	Activities of sports clubs	5.	Cleaning the walkways by sweeping instead of washing them with a hose	
	Aci	6.	Use of an efficient, high-pressure system if wet cleaning is required to wash walkways	
		7.	Control of irrigation processes through the use of timers and rain gauges	
		8.	Use of water obtained by rainwater harvesting in garden irrigation	
			Good Management Practices	
		1.	Use integrated wastewater management and treatment strategy to reduce wastewater quantity and pollutant load	
		2.	Establishment of environmental management system	
		3.	Preparation of water flow diagrams and mass balances for water	
			4.	Preparing a water efficiency action plan to reduce water use and prevent water pollution
		5.	Providing technical trainings to personnel for the reduction and optimisation of water use	
		6.	Good production planning to optimise water consumption	
		7.	Determination of water efficiency targets	
		8.	Monitoring of water used in production processes and auxiliary processes and wastewater generated in terms of quantity and quality and monitoring of this information the environmental management system	

NACE Code	NACE Code Description		Prioritised Sectoral Water Efficiency Techniques	
93.12			Measures in the nature of General Measures	
	w	1.	Minimising spillages and leakages	
	Activities of sports clubs	2.	Shower/toilet etc. will provide water saving at water usage points use of automated hardware and equipment (sensors, smart hand washing systems, etc.)	
	of spo	3.	Use of pressure washing systems for equipment cleaning, general cleaning, etc.	
	ies	4.Id	dentification and minimisation of water losses	
	Activit	5. 6.	Use of automatic control-close valves to optimise water use Documented production procedures to prevent water and energy	
			wastage and use by employees Substances that pose a risk in the aquatic environment (oils, emulsions, binders)	
		7.	(e.g., in the case of a wastewater treatment plant) storage, preservation and prevention of its mixing with wastewater after use	
		8.	Prevention of mixing of clean water streams with dirty water	
		9.	streams Use of computer-aided control systems in production	
		9.	processes	
			Separate collection and treatment of grey water in the plant and high water	
		10.	quality in areas that do not require (green area irrigation, floor, floor washing, etc.)	
			11.	Implementation of time optimisation in production and arrangement of all processes to be completed as soon as possible
		12.	racility cleaning or in suitable areas	
A total of	of 28 techr	nique	es have been proposed in this sector.	

Activities of Sports Clubs for NACE Code;

- (i) Sector Specific Measures,(ii) Good Management Practices,
- (iii) General Precautions are given under separate headings.

2.1.1 Sector Specific Measures

• To minimise evaporation, green areas should be irrigated during the hours when evaporation is lowest

Water losses due to evaporation during irrigation can be prevented by irrigating plants in the morning or in the evening after sunset (Meade & Morel, 1999).

• Control of irrigation processes through the use of timers and rain gauges

The use of timers and rain gauges in irrigation processes and the use of intelligent automation systems using real-time weather and climate data make it easier to optimise irrigation processes. With optimum irrigation, unnecessary and excessive water consumption can be prevented. In addition, by monitoring weather and rainfall conditions, unnecessary irrigation can be avoided and water savings can be achieved (Meade & Morel, 1999).

- Cleaning the walkways by sweeping instead of washing them with a hose
 Using brooms instead of water to clean the walkways can prevent water wastage (Meade & Morel, 1999).
- If wet cleaning is required for walkways, the use of an efficient, high-pressure system Cleaning walkways by pressurised water spraying can avoid excess water use (Meade & Morel, 1999).
- Replacement of old and inefficient pre-rinse spray valves used in dishwashers with efficient ones

Before the dishes are loaded into the machine, they are usually cleaned with a pre-rinse spray valve. Replacing outdated spray valves with a new and improved model reduces water consumption.

Lawn Irrigation - Springer Systems

• Use of combination ovens instead of steam cookers

Cooking is usually done with steam cookers using a central boiler. These cookers usually consume large amounts of water. Combination ovens, on the other hand, cook food in less time by distributing the heat evenly. Water and energy savings can be achieved by using combined ovens.

• Use of pedal taps or sensor taps in kitchens

Replacing conventional taps with pedal taps or sensor taps is important to prevent water wastage (Meade & Morel, 1999).

• Use of water obtained by rainwater harvesting in garden irrigation

Collected rainwater can be used for irrigation of green areas. Significant water savings can be achieved by using this water instead of municipal water (NYCEP, n.d.).

2.1.2 Good Management Practices

• Establishment of environmental management system

Environmental Management Systems (EMS) include the organisational structure, responsibilities, procedures and resources required to develop, implement and monitor the environmental policies of industrial organisations. The establishment of an environmental management system improves the decision-making processes between raw materials, water and wastewater infrastructure, planned production process and different treatment techniques. Environmental management organises how resource supply and waste discharge demands can be managed with the highest economic efficiency, without compromising product quality and with the least possible impact on the environment.

The most widely used Environmental Management Standard is ISO 14001. Alternatives include the Eco Management and Audit Scheme Directive (EMAS) (761/2001). It has been developed for the assessment, improvement and reporting of the environmental performance of enterprises. It is one of the leading practices within the scope of ecoefficiency (cleaner production) in EU legislation and voluntary participation is provided (TUBITAK MAM, 2016; MoAF, 2021). The benefits of establishing and implementing an Environmental Management System are as follows:

- Economic benefits can be obtained by improving business performance (Christopher, 1998).
- International Standards Organisation (ISO) standards are adopted to ensure greater compliance with global legal and regulatory requirements (Christopher, 1998).
- While the risks of penalties related to environmental responsibilities are minimised, the amount of waste, resource consumption and operating costs are reduced (Delmas, 2009).
- The use of internationally recognised environmental standards eliminates the need for multiple registrations and certificates for businesses operating in different locations around the world (Hutchens Jr., 2017).
- Especially in recent years, the improvement of the internal control processes of companies is also considered important by consumers. The implementation of environmental management systems provides a competitive advantage against companies that do not adopt the standard. It also contributes to the better position of organisations in international areas / markets (Potoski & Prakash, 2005).

The above-mentioned benefits depend on many factors such as the production process, management practices, resource utilisation and potential environmental impacts (MoAF, 2021). Practices such as preparing annual inventory reports with similar content to the environmental management system and monitoring the quantity and quality of inputs and outputs in production processes can save 3-5% of water consumption (Öztürk, 2014). The total duration of the development and implementation phases of the EMS takes an estimated 8-12 months (ISO 14001 User Manual, 2015).

Industrial organisations also carry out studies within the scope of ISO 14046 Water Footprint Standard, an international standard that defines the requirements and guidelines for assessing and reporting water footprint. With the implementation of the relevant standard, it is aimed to reduce the use of fresh water required for production and environmental impacts. In addition, ISO 46001 Water Efficiency Management Systems Standard, which helps industrial organisations to save water and reduce operating costs, helps organisations to develop water efficiency policies by conducting monitoring, benchmarking and review studies.

• Use integrated wastewater management and treatment strategy to reduce wastewater quantity and pollutant load

Wastewater management should be based on a holistic approach from wastewater generation to final disposal and includes functional elements such as composition, collection, treatment including sludge disposal and reuse. The selection of the appropriate treatment technology for industrial wastewater depends on integrated factors such as land availability, desired treated water quality and compliance with national and local regulations (Abbassi & Al Baz, 2008).

On-site reuse of treated wastewater not only improves the quality of water bodies, but also reduces the demand for freshwater. It is therefore very important to identify appropriate treatment strategies for different reuse objectives.

In integrated industrial wastewater treatment, different aspects such as wastewater collection system, treatment process and reuse target are evaluated together (Naghedi et al., 2020). For industrial wastewater recovery, methods such as SWOT method (strengths, weaknesses, opportunities and threats), PESTEL method (political, economic, social, technological, environmental and legal factors), decision tree can be combined with expert opinions to determine the integrated wastewater management framework (Naghedi et al., 2020). The integration of Analytic Hierarchy Process (AHP) and CoCoSo techniques can be used to determine priorities based on multiple criteria for industrial wastewater management processes (Adar et al., 2021).

The implementation of integrated wastewater management strategies can lead to an average reduction of up to 25% in water consumption, wastewater quantity and pollution loads of wastewater. The potential payback period of the implementation varies between 1-10 years (MoAF, 2021).

Industrial Wastewater Treatment Plant

• Providing technical trainings to personnel for the reduction and optimisation of water use

With this measure, water saving and water recovery can be achieved by increasing the training and awareness of the personnel, and water efficiency can be achieved by reducing water consumption and costs. In industrial facilities, problems related to high water consumption and wastewater generation may arise due to the lack of necessary technical knowledge of the personnel. For example, it is important that cooling tower operators, which represent a significant proportion of water consumption in industrial operations, are properly trained and have technical knowledge. Determination of water quality requirements in production processes, measurement of water and wastewater quantities, etc. It is also necessary for the relevant personnel to have sufficient technical knowledge (MoAF, 2021). Therefore, it is important to provide training to staff on water use reduction, optimisation and water saving policies. Practices such as involving the staff in water saving studies, creating regular reports on the amount of water use before and after water efficiency initiatives, and sharing these reports with the staff support participation and motivation in the process. The technical, economic and environmental benefits to be obtained through staff training yield results in the medium or long term (TUBITAK MAM, 2016; MoAF, 2021).

• Monitoring the water used in production processes and auxiliary processes and the wastewater generated in terms of quantity and quality and adapting this information to the environmental management system There is resource utilisation in industrial facilities and there is resource utilisation as a result of resource utilisation.

Inefficiency and environmental problems may arise from input-output flows. For this reason Water and wastewater used in production processes and auxiliary processes should be monitored in terms of quantity and quality (TUBITAK MAM, 2016; MoAF, 2021). Process-based quantity and quality monitoring, together with other good management practices (personnel training, establishment of an environmental management system, etc.), can reduce energy consumption by 6-10% and water consumption and wastewater by up to 25% (Öztürk, 2014).

The main stages for monitoring water and wastewater in terms of quantity and quality are as follows

- Use of monitoring equipment (such as counters) to monitor water, energy, etc. consumption on a process basis,
- Establishment of monitoring procedures,
- Determining the usage/exit points of all inputs and outputs (raw materials, chemicals, water, products, wastewater, sludge, solid waste, hazardous waste and by-products) related to the production process, monitoring, documenting, comparative evaluation and reporting in terms of quantity and quality,
- Monitoring raw material losses in production processes where raw materials are transformed into products and taking measures against raw material losses (MoEUCC, 2020e).

• Effective planning to optimise water consumption

Carrying out the production processes of products, goods and services using the minimum number of processes and work steps is an effective practice for reducing labour and resource use, environmental impacts and associated costs and ensuring efficiency (TUBITAK MAM, 2016; MoAF, 2021). On the other hand, making the necessary planning by considering water efficiency at every stage of industrial products and services reduces water consumption and wastewater amount in production processes. Modifying production and business processes or combining some processes and work steps provides significant benefits in terms of water efficiency and time planning (MoAF, 2021).

• Preparing a water efficiency action plan to reduce water use and prevent water pollution

It is important for water efficiency to prepare an action plan that includes short, medium and long term actions to be taken in order to reduce water-wastewater quantities and prevent water pollution in industrial facilities. At this point, determination of water needs throughout the facility and in production processes, determination of quality requirements at water use points, wastewater generation points and wastewater characterisation should be carried out (MoAF, 2021). At the same time, it is necessary to determine the measures to be implemented to reduce water consumption, wastewater generation and pollution loads, to make their feasibility and to prepare action plans for the short-medium-long term. In this way, water efficiency and sustainable water use are ensured in the facilities (MoAF, 2021).

• Determination of water efficiency targets

The first step in achieving water efficiency in industrial facilities is to set targets (MoAF, 2021). For this, a detailed water efficiency analysis should be carried out on the basis of processes. In this way, unnecessary water use, water losses, wrong practices affecting water efficiency, process losses, reusable water-wastewater sources with or without treatment, etc. can be determined. It is also extremely important to determine the water saving potential and water efficiency targets for each production process and the plant as a whole (MoAF, 2021).

• Preparation of water flow diagrams and mass balances for water

Determination of water use and wastewater generation points in industrial plants, establishment of water-wastewater balances in production processes and auxiliary processes other than production processes constitute the basis of many good management practices in general. Establishing process profiles throughout the plant and on the basis of production processes facilitates the identification of unnecessary water use points and high water use points, evaluation of water recovery opportunities, process modifications and determination of water losses (MoAF, 2021).

2.1.3 Measures in the Nature of General Measures

• Identification and minimisation of water losses

Water losses occur in equipment, pumps and pipelines in industrial production processes. Firstly, water losses should be identified and leakages should be prevented by regular maintenance of equipment, pumps and pipelines to keep them in good condition (IPPC BREF, 2003). Regular maintenance procedures should be established, paying particular attention to the following points:

- Adding pumps, valves, level switches, pressure and flow regulators to the maintenance checklist,
- Carrying out inspections not only in the water system, but also in particular in the heat transfer and chemical distribution systems, broken and leaking pipes, barrels, pumps and valves,
- Regular cleaning of filters and pipework,
- Calibrate, routinely check and monitor measuring equipment such as chemical measuring and dispensing devices, thermometers, etc. (IPPC BREF, 2003).

With effective maintenance-repair, cleaning and loss control practices, savings ranging from 1-6% in water consumption can be achieved (Öztürk, 2014).

• Minimising spillages and leakages

Both raw material and water losses can occur due to spills and leaks in enterprises. In addition, if wet cleaning methods are used to clean the areas where spillage occurs, water consumption, wastewater amounts and pollution loads of wastewater may also increase (MoAF, 2021). In order to reduce raw material and product losses, spill and splash losses are reduced by using splash guards, flaps, drip trays, sieves (IPPC BREF, 2019).

• Prevention of mixing of clean water flows with polluted water flows

By determining the wastewater generation points in industrial facilities and characterising the wastewater, wastewater with high pollution load and relatively clean wastewater can be collected in separate lines (TUBITAK MAM, 2016; MoAF, 2021). In this way, wastewater streams with appropriate quality can be reused with or without treatment. With the separation of wastewater streams, water pollution is reduced, treatment performances are improved, energy consumption can be reduced in relation to the reduction of treatment needs, and emissions are reduced by providing wastewater recovery and recovery of valuable materials. In addition, heat recovery from separated hot wastewater streams is also possible (TUBITAK MAM, 2016; MoAF, 2021). Separation of wastewater streams generally requires high investment costs, and where it is possible to recover large amounts of wastewater and energy, costs can be reduced (IPPC BREF, 2006).

• Use of pressure washing systems for equipment cleaning, general cleaning, etc.

Water nozzles are widely used in equipment plant cleaning. Effective results can be achieved by using correctly placed, appropriate nozzles to reduce water consumption and wastewater pollution loads. The use of active sensors and nozzles at points where high water consumption occurs and where possible is very important in terms of efficient use of water. It is possible to achieve significant water savings by replacing mechanical equipment with pressurised nozzles (TUBITAK MAM, 2016). Reducing water consumption, wastewater generation and wastewater pollution load through the use of water pressure optimised nozzles in technically appropriate processes are the main environmental benefits of the application.

• Use of automatic control-close valves to optimise water use

Monitoring and controlling water consumption using flow control devices, meters and computer-aided monitoring systems provide significant technical, environmental and economic advantages (Öztürk, 2014). Monitoring the amount of water consumed in the plant and in various processes prevents water losses (TUBITAK MAM, 2016). It is necessary to use flow meters and counters in the plant in general and in production processes in particular, to use automatic shut-off valves and valves in continuously operating machines, and to develop monitoring-control mechanisms according to water consumption and some determined quality parameters by using computer-aided systems (TUBITAK MAM, 2016). With this application, it is possible to save up to 20-30% of water consumption on process basis (DEPA, 2002; LCPC, 2010; IPPC BREF, 2003). By monitoring and controlling water consumption on a process basis, 3-5% savings can be achieved in process water consumption (Öztürk, 2014).

• Collecting rainwater and utilising it as an alternative water source in facility cleaning or in suitable areas

Nowadays, when water resources are decreasing, rainwater harvesting is frequently preferred especially in regions with low rainfall. There are different technologies and systems for rainwater collection and distribution systems. Cistern systems, ground infiltration, surface collection and filter systems are used. Rainwater collected with special drainage systems can be used for production processes, garden irrigation, tank and equipment cleaning, surface cleaning, etc. if it meets the required quality requirements (Tanık et al., 2015).

In various examples, roof rainwater collected in industrial facilities was stored and used inside the building and in landscape areas, resulting in 50% water saving in landscape irrigation (Yaman, 2009). Perforated stones and green areas can be preferred in order to increase the permeability of the ground and to allow rainwater to pass and absorb into the soil on the site (Yaman, 2009). Rainwater collected on building roofs can be used for car washing and garden irrigation. It is possible to recover and reuse 95% of the collected water by biological treatment after use (Şahin, 2010).

• Storage and storage of substances (such as oils, emulsions, binders) that pose a risk in the aquatic environment and prevention of their mixing with wastewater after use

In industrial plants, water recovery is achieved by using dry cleaning techniques and preventing leaks to prevent the mixing of chemicals that pose a risk to the aquatic environment such as oils, emulsions and binders into wastewater streams (TUBITAK MAM, 2016).

• Use of computer aided control systems in production processes

Since inefficient resource utilisation and environmental problems in industrial facilities are directly related to input-output flows, it is necessary to define the process inputs and outputs in the best way for production processes (TUBITAK MAM, 2016). Thus, it becomes possible to develop measures to improve resource efficiency, economic and environmental performance. The organisation of input-output inventories is considered as a prerequisite for continuous improvement. While such management practices require the participation of technical staff and senior management, they pay for themselves in a short time with the work of various experts (IPPC BREF, 2003). It is necessary to use measurement equipment on the basis of application processes and to carry out some routine analyses/measurements specific to the processes. Utilising computerised monitoring systems as much as possible in order to maximise the efficiency of the application increases the technical, economic and environmental benefits (TUBITAK MAM, 2016).

• Implementation of time optimisation in production and arrangement of all processes to be completed as soon as possible

In industrial production processes, planning the process from raw material to product by using the minimum number of processes is an effective practice for reducing labour costs, resource use costs and environmental impacts and ensuring efficiency. In this context, it may be necessary to revise the production processes so that the minimum number of process steps is used (TUBITAK MAM, 2016). In cases where the desired product quality cannot be achieved due to some inefficiencies, inefficiency and design errors in basic production processes, production processes may need to be renewed. Therefore, in this case, the resource utilisation and the amount of waste, emission and solid waste generated in the production of unit amount of product increases. Time optimisation in production processes is an effective practice in terms of resource use and waste management (TUBITAK MAM, 2016).

Computer Aided Control System

• Documented production procedures are kept and used by employees to prevent water and energy wastage

In order to ensure efficient production in an enterprise, effective procedures should be implemented to identify and evaluate potential problems and resources and to control production stages (Ayan, 2010). Determining and implementing appropriate procedures in production processes ensures more efficient use of resources (such as raw materials, water, energy, chemicals, personnel and time) and ensures reliability and quality in production processes (Ayan, 2010). The existence of documented production procedures in production processes contributes to the development of corporate reflex capability for the evaluation of business performance and the solution of problems (TUBITAK MAM, 2016; MoAF, 2021). Effective implementation and monitoring of the procedures created specifically for production processes is one of the most effective ways to ensure product quality, receive feedback and develop solutions (Ayan, 2010). Documentation, effective implementation and monitoring of production procedures is a good management practice and an effective tool in structuring and ensuring the continuity of the cleaner production approach and environmental management system. In addition to the potential benefits, the cost and economic gains of the application may vary from sector to sector or depending on the facility structure (TUBITAK MAM, 2016; MoAF, 2021). Although establishing and monitoring production procedures is not costly, the payback period may be short considering the savings and benefits it will provide (TUBITAK MAM, 2016; MoAF, 2021).

• Use of automatic hardware and equipment (sensors, smart hand washing systems, etc.) that will save water at water usage points such as showers/toilets etc.

Water is very important in many sectors of the manufacturing industry, both for production processes and for personnel to meet the necessary hygiene standards. Water consumption in the production processes of industrial facilities can be provided in various ways, as well as water consumption savings can be achieved by using equipment such as sensor faucets and smart hand washing systems in the water usage areas of the personnel. Smart hand washing systems provide resource efficiency in addition to water saving while adjusting the mixture of water, soap and air at the right rate.

• Separate collection and treatment of grey water and its use in areas that do not require high water quality (green area irrigation, floor washing, etc.)

Water from showers, bathrooms, washbasins, washing machines and dishwashers are defined as grey water. Grey water and domestic wastewater have the potential to be recovered after being treated under appropriate conditions. Significant water savings can be achieved by recovering and reusing these waters.

Used water from sinks, showers and laundries can be reused for irrigation after appropriate treatment. Using grey water from sinks, showers and laundry for irrigation can reduce water consumption by up to 20 percent (Meade & Morel, 1999).

Referances

- Abbassi, B., & Al Baz, I. (2008). Integrated Wastewater Management: A Review. https://doi.org/10.1007/978-3-540-74492-4_3.
- Adar, E., Delice, E., & Adar, T. (2021). Prioritising of industrial wastewater management processes using an integrated AHP-CoCoSo model: comparative and sensitivity analyses. International Journal of Environmental Science and Technology, 1-22.
- Ayan, B. (2010). International Certification Systems in Welded Manufacturing Enterprises. Izmir: Dokuz Eylül University, Institute of Social Sciences, Department of Business Administration, Master's Thesis.
- Christopher, S. (1998). ISO 14001 and Beyond Environmental Management Systems in the Real World.
- MoEU. (2020e). Cleaner Production Practices in Certain Sectors Project. Republic of Turkey Ministry of Environment, Urbanisation and Climate Change General Directorate of Environmental Management.
- Delmas, M. (2009). Erratum to "Stakeholders and Competitive Advantage: The Case of ISO 14001. doi:10.1111/j.1937-5956.2004.tb00226.x.
- DEPA. (2002). Danish Environmental Protection Agency (DEPA). Danish Experience, Best Avaible Techniques-Bat in the Clothing and Textile Industry.
- Hutchens Jr., S. (2017). Using ISO 9001 or ISO 14001 to Gain a Competitive Advantage.
- IPPC BREF. (2003). Reference Document on Best Available Techniques for the Textiles Industry. Retrieved from https://eippcb.jrc.ec.europa.eu/reference
- IPPC BREF. (2006). European Commission (EC) Integrated Pollution Prevention and Control Reference Document on Best Available Techniques for the Surface Treatment of Metals and Plastics.
- IPPC BREF. (2019). Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. https://eippcb.jrc.ec.europa.eu/reference.
- ISO 14001 User Manual. (2015). Generic ISO 14001 EMS Templates User Manual.
- LCPC. (2010). Lebanese Cleaner Production Centre . Cleaner Production Guide for Textile Industries.
- Naghedi, R., Moghaddam, M., & Piadeh, F. (2020). Creating functional group alternatives in integrated industrial wastewater recycling system: A case study of Toos Industrial Park (Iran). Journal of Cleaner Production. doi:https://doi.org/10.1016/j.jclepro.2020.120464.
- Öztürk, E. (2014). Integrated Pollution Prevention and Control and Cleaner Production Practices in Textile Sector. Isparta.
- Potoski, M., & Prakash, A. (2005). Green Clubs and Voluntary Governance: ISO 14001 and Firms' Regulatory Compliance. American Journal of Political Science, 235-248.
- Sahin, N. I. (2010). Water Conservation in Buildings. Istanbul: Master Thesis, Istanbul Technical University Institute of Science and Technology.
- Tanık, A., Öztürk, İ., & Cüceloğlu, G. (2015). Reuse of Treated Wastewater and Rainwater Harvesting Systems (Handbook). Ankara: Union of Municipalities of Türkiye.
- MoAF. (2021). Technical Assistance Project for Economic Analyses and Water Efficiency Studies within the Scope of River Basin Management Plans in 3 Pilot Basins. Republic of Türkiye Ministry of Agriculture and Forestry.
- TUBİTAK MAM. (2016). Determination of Cleaner Production Opportunities and Applicability in Industry (SANVER) Project, Final Report. Scientific and Technological Research Council of Türkiye Marmara Research Centre.
- Yaman, C. (2009). Siemens Gebze Facilities Green Building. IX. National Installation Engineering Congress.

 •
 • • • • • • • • • • •
 • • • • • • • • • • •

industrial water use efficiency Project According to NACE codes

 •
• • • • • • • • • • • • • • • • • • • •
 •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
 •

Reşitpaşa Mah Katar Cd. Arı Teknokent 1 2/5, D:12, 34469 Sarıyer/Istanbul

(0212) 276 65 48

www.iocevre.com