

### T.R. MINISTRY OF AGRICULTURE AND FORESTRY GENERAL DIRECTORATE OF WATER MANAGEMENT









# RECOVERY OF SORTED MATERIALS

**NACE CODE: 38.32** 

**ANKARA 2023** 

It was commissioned by the Ministry of Agriculture and Forestry, General Directorate of Water Management to the Contractor io Environmental Solutions R&D Ltd. Şti.

#### All rights reserved.

This document and its contents may not be used or reproduced without the permission of the General Directorate of Water Management.

### Contents

|       | Abbreviations                       |    |  |  |
|-------|-------------------------------------|----|--|--|
| 1     | Introduction                        |    |  |  |
| 2     | Scope of the Study                  |    |  |  |
| 2.1   | Recovery of Sorted Materials        | 10 |  |  |
| 2.1.1 | Sector Specific Measures            | 14 |  |  |
| 2.1.2 | Good Management Practices           |    |  |  |
| 2.1.3 | General Water Efficiency BATs       |    |  |  |
| 2.1.4 | Precautions for Auxiliary Processes |    |  |  |
|       | Bibliography                        | 27 |  |  |

### **Abbreviations**

| WTP      | Wastewater Treatment Plant                                                   |
|----------|------------------------------------------------------------------------------|
| EU       | European Union                                                               |
| SSM      | Suspended Solid Matter                                                       |
| BREF     | Best Available Techniques Reference Document                                 |
| EMS      | Environmental Management System                                              |
| MEUCC    | Republic of Türkiye Ministry of Environment, Urbanisation and Climate Change |
| NOM      | Natural Organic Matter                                                       |
| EMAS     | Eco-Management and Audit Programme Directive                                 |
| EPA      | United States Environmental Protection Agency                                |
| IPPC     | Industrial Pollution Prevention and Control                                  |
| ISO      | International Standards Organisation                                         |
| BAT      | Best Available Techniques                                                    |
| NACE     | Statistical Classification of Economic Activities                            |
| GDWM     | General Directorate of Water Management                                      |
| RO       | Reverse Osmosis                                                              |
| MAF      | Republic of Türkiye Ministry of Agriculture and Forestry                     |
| TurkSTAT | Turkish Statistical Institute                                                |
| NF       | Nanofiltration                                                               |
| MF       | Microfiltration                                                              |
| UF       | Ultrafiltration                                                              |
| GW       | Groundwater                                                                  |
| SW       | Surface Water                                                                |

### 1 Introduction

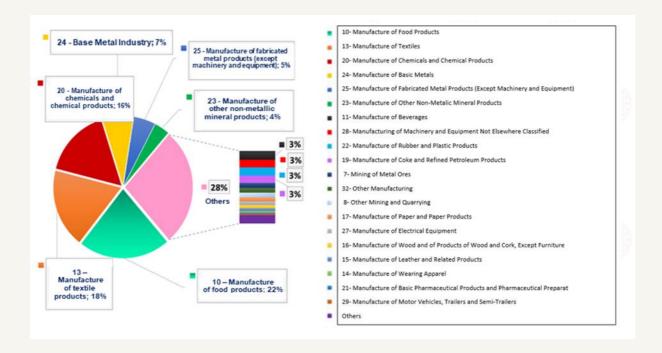
Türkiye is located in the Mediterranean basin, where the effects of global climate change are felt intensely, and is considered to be among the regions that will be most affected by the negative effects of climate change. Projections on how our water resources in our basins will be affected in the future due to climate change show that our water resources may decrease by up to 25 per cent in the next hundred years.

For the year 2022, the annual amount of water available per capita in Türkiye is 1,313 m³, and it is expected that the annual amount of water available per capita will fall below 1,000 cubic metres after 2030 due to human pressures and the effects of climate change. If the necessary measures are not taken, it is obvious that Türkiye will become a country suffering from water scarcity in the very near future and will bring many negative social and economic consequences. As can be understood from the results of future projections, the risk of drought and water scarcity awaiting our country necessitates the efficient and sustainable use of our existing water resources.

The concept of water efficiency can be defined as "using the least amount of water in the production of a product or service". The water efficiency approach is based on the rational, sharing, equitable, efficient and effective use of water in all sectors, especially in drinking water, agriculture, industry and household use, in a way that protects water in terms of quantity and quality and takes into account not only the needs of humans but also the needs of all living things with ecosystem sensitivity.

With the increasing demand for water resources, changes in precipitation and temperature regimes as a result of climate change, increasing population, urbanisation and pollution, fair and balanced allocation of usable water resources among users is becoming more and more important every day. For this reason, it has become a necessity to create a road map based on efficiency and optimisation in order to protect and use limited water resources through sustainable management practices.

In the sustainable development vision set by the United Nations, aspects such as efficient, equitable, and sustainable use of resources—especially water—environmentally friendly production, and consumption mindful of future generations are addressed within the scope of the Millennium Development Goals, specifically Goal 7: Ensuring Environmental Sustainability, as well as within the Sustainable Development Goals, specifically Goal 9: Industry, Innovation, and Infrastructure, and Goal 12: Responsible Production and Consumption.


Within the framework of the European Green Deal, which member countries have agreed upon with goals such as achieving a carbon-neutral target, implementing a clean and circular economy model, promoting efficient resource use, and reducing environmental impacts, our country's European Green Deal Action Plan outlines actions emphasizing water and resource efficiency in production and consumption, particularly in the industrial sector and various other areas.

The "Industrial Emissions Directive (EED)", which is one of the most important components of the European Union environmental legislation in terms of industry, includes measures to be taken for the control, prevention or reduction of discharges/emissions from industrial activities to the receiving environment, including air, water and soil, with an integrated approach. In the Directive, Best Available Techniques (BAT) are presented in order to systematise the applicability of cleaner production processes and to eliminate difficulties in implementation. BATs are the most effective implementation techniques for a high level of environmental protection, taking into account their costs and benefits. In accordance with the Directive, Reference Documents (BAT-BREF) have been prepared for each sector in which BATs are explained in detail. In BREF documents, BATs are presented in a general framework such as good management practices, techniques as general measures, chemical use and management, techniques for various production processes, wastewater management, emission management and waste management.

The Ministry of Agriculture and Forestry, General Directorate of Water Management carries out activities aimed at disseminating efficient practices in urban, agricultural, industrial and individual water use and raising social awareness. Water efficiency action plans addressing all sectors and stakeholders were prepared within the scope of *the "Water Efficiency Strategy Document and Action Plan (2023–2033) within the Framework of Adaptation to a Changing Climate"*, which entered into force with the Presidential Circular No. 2023/9. In the Industrial Water Efficiency Action Plan, a total of 12 actions have been determined for the period 2023-2033 and responsible and relevant institutions have been assigned for these actions. Within the scope of the Action Plan, the General Directorate of Water Management is responsible for carrying out studies to determine specific water use ranges and quality requirements on the basis of sub-sectors in industry, organising technical training programmes and workshops on sectoral basis and preparing water efficiency quidance documents.

On the other hand, with the "Industrial Water Use Efficiency Project by NACE Codes" carried out by the General Directorate of Water Management of the Ministry of Agriculture and Forestry, the best sectoral techniques specific to our country were determined within the scope of studies on improving water efficiency in industry. As a result of the study, sectoral guidance documents and action plans categorised by NACE codes, including the measures recommended for improving water use efficiency in sectors with high water consumption operating in our country, were prepared.

As in the world, the sectors with the highest share in water consumption in our country are food, textile, chemical and basic metal sectors. Within the scope of the studies, field visits were carried out in enterprises representing 152 sub-sectors in 35 main sectors, especially food, textile, chemical and basic metal industries, which represent production areas with different capacities and diversity within the scope of NACE Codes operating in our country and with high water consumption, and data on water supply, sectoral water use, wastewater generation, recycling were obtained and information was provided on best available techniques (BAT) and sectoral reference documents (BREF), water efficiency, clean production, water footprint, etc. published by the European Union.



Sectoral distribution of water use in industry in Türkiye

As a result of the studies, specific water consumption and potential saving rates for the processes of enterprises for 152 different 4-digit NACE codes with high water consumption were determined, and water efficiency guidance documents were prepared by taking into account the EU best available techniques (BAT) and other cleaner production techniques. Within the guidelines, 500 techniques (BAT) for water efficiency;

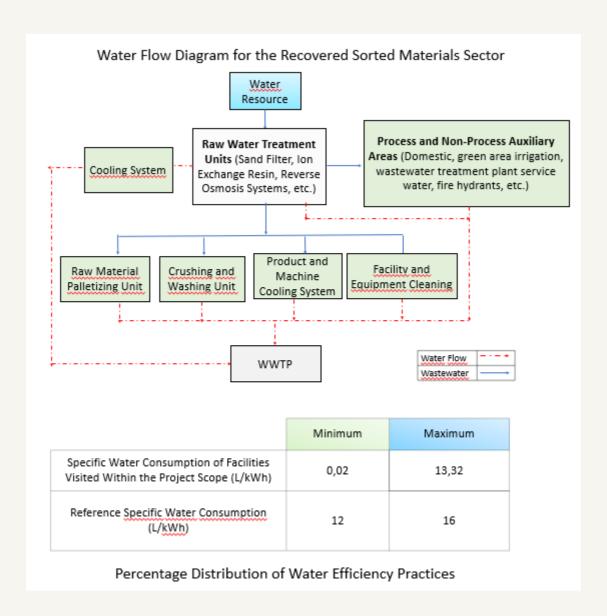
(i) Good Management Practices, (ii) General Water Efficiency BATs, (iii) Measures Related to Auxiliary Processes and (iv) Sector Specific Measures.

Within the scope of the project, environmental benefits, operational data, technical specifications-requirements and applicability criteria were taken into consideration during the determination of BATs for each sector. In the determination of BATs, not only BREF documents were not limited, but also different data sources such as current literature data on a global scale, real case analyses, innovative practices, reports of sector representatives were examined in detail and sectoral BAT lists were created. In order to evaluate the suitability of the BAT lists created for the local industrial infrastructure and capacity of our country, the BAT lists prepared specifically for each NACE code were prioritised by the enterprises by scoring them on the criteria of water saving, economic savings, environmental benefit, applicability, cross-media impact and the final BAT lists were determined using the scoring results. Water and wastewater data of the facilities visited within the scope of the project and the final BAT lists, which were prioritised by sectoral stakeholders and determined by taking into account the local dynamics specific to our country, were used to create sectoral water efficiency guides on the basis of NACE code.

### 2 Scope of the Study

Guidance documents prepared within the scope of water efficiency measures in industry cover the following main sectors:

- Crop and animal production and hunting and related service activities (including subproduction area represented by 6 four-digit NACE codes)
- Fisheries and aquaculture (including sub-production area represented by 1 four-digit NACE Code)
- Coal and lignite extraction (including sub-production area represented by 2 four-digit NACE codes)
- Service activities in support of mining (including sub-production area represented by 1 fourdigit NACE Code)
- Metal ores mining (including the sub-production area represented by 2 four-digit NACE codes)
- Other mining and quarrying (including the sub-production area represented by 2 four-digit NACE codes)
- Manufacture of food products (including 22 sub-production areas represented by four-digit NACE codes)
- Manufacture of beverages (including the sub-production area represented by 4 four-digit NACE codes)
- Manufacture of tobacco products (including sub-production area represented by 1 four-digit NACE Code)
- Manufacture of textile products (including 9 sub-production areas represented by four-digit NACE codes)
- Manufacture of articles of clothing (including sub-production area represented by 1 four-digit NACE Code)
- Manufacture of leather and related products (including sub-production area represented by 3 four-digit NACE codes)
- Manufacture of wood, wood products and cork products (except furniture); manufacture of articles made of thatch, straw and similar materials (including sub-production area represented by 5 four-digit NACE Codes)
- Manufacture of paper and paper products (including sub-production area represented by 3 four-digit NACE codes)
- Manufacture of coke and refined petroleum products (including sub-production area represented by 1 four-digit NACE Code)
- Manufacture of chemicals and chemical products (including 13 sub-production areas represented by four-digit NACE codes)
- Manufacture of basic pharmaceutical products and pharmaceutical ingredients (including subproduction area represented by 1 four-digit NACE Code)
- Manufacture of rubber and plastic products (including sub-production area represented by 6 four-digit NACE codes)
- Manufacture of other non-metallic mineral products (including 12 sub-production areas represented by four-digit NACE codes)
- Basic metal industry (including 11 sub-production areas represented by four-digit NACE codes)
- Manufacture of fabricated metal products (except machinery and equipment) (including 12 sub-production areas represented by four-digit NACE codes)
- Manufacture of computers, electronic and optical products (including sub-production area represented by 2 four-digit NACE codes)
- Manufacture of electrical equipment (including sub-production area represented by 7 four-digit NACE codes)


- Manufacture of machinery and equipment not elsewhere classified (including sub-production area represented by 8 four-digit NACE codes)
- Manufacture of motor vehicles, trailers (semi-trailers) and semi-trailers (semi-trailers) (including sub-production area represented by 3 four-digit NACE codes)
- Manufacture of other transport equipment (including sub-production area represented by 2 four-digit NACE codes)
- Other manufacturing (including 2 sub-production areas represented by four-digit NACE codes)
- Installation and repair of machinery and equipment (including sub-production area represented by 2 four-digit NACE codes)
- Electricity, gas, steam and ventilation system production and distribution (including subproduction area represented by 2 four-digit NACE codes)
- Waste collection, reclamation and disposal activities; recovery of materials (including subproduction area represented by 1 four-digit NACE Code)
- Construction of non-building structures (including sub-production area represented by 1 four-digit NACE Code)
- Warehousing and supporting activities for transport (including sub-production area represented by 1 four-digit NACE Code)
- Accommodation (including sub-production area represented by 1 four-digit NACE Code)
- Educational Activities (Higher Education Campuses) (including sub-production area represented by 1 four-digit NACE Code)
- Sporting activities, leisure and recreation activities (including sub-production area represented by 1 four-digit NACE Code)

Waste collection, treatment and disposal activities; recovery of materials

Waste collection, reclamation and disposal activities; sub-production branches for which guidance documents were prepared under the recovery of materials sectors are as follows:

38.32 Recovery of Sorted Materials

### 2.1 Recovery of Sorted Materials (NACE 38.32)





After the controls of the wastes coming to the facility are made, they are taken to the sorting unit. Here, it is divided into two as recyclable waste and non-recyclable waste. After the recyclable waste accumulation process, the wastes are brought to smaller sizes in the crushing machine. Then, it is taken to the washing machine if necessary according to the type of waste. Recovered materials are taken by licensed collection and sorting companies or sent to companies that use them as raw materials. Wastes that cannot be utilised are sent to licensed recycling and disposal companies.

Water consumption occurs in the raw material pelletising unit, washing and crushing processes in the sorted materials recovery sector. Water consumption occurs in the machine and product cooling process in the sector. The water used in product cooling is used in recirculation and is added as it decreases as a result of evaporation. In raw water preparation units such as activated carbon filter, ion exchange resin, reverse osmosis, which are used to produce soft water to be used in production processes, significant water consumption occurs for filter washing, resin regeneration and membrane cleaning processes. In addition, water consumption is also realised in auxiliary processes such as cooling system.

The reference specific water consumption in the recovery of sorted materials sector is in the range of 12 - 16 L/kg. The specific water consumption of the production line analysed within the scope of the study is 0.02 - 13.32 L/kg. With the implementation of good management practices, general water efficiency BATs and measures related to auxiliary processes, it is possible to achieve water savings of 17 - 78% in the sector.



https://www.jangyec.com/uploads/20200801/8e859cf0a55053daa025baaeb594e755.jpg

Crushing and Separation System in Lead Recovery Plant from Waste Batteries

38.32 Recovery of Sorted Materials Priority water efficiency implementation techniques recommended under the NACE code are presented in the table below.

| NACE<br>Code | NACE<br>Code<br>Description  |    | Prioritised Sectoral Water Efficiency Techniques                                                                                                                                                             |
|--------------|------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .32          |                              |    | Sector Specific Measures                                                                                                                                                                                     |
| 38.          |                              | 1. | Closed-loop utilisation-recovery or reuse of washing-rinsing wastewater, including chemical recovery                                                                                                         |
|              | <u> </u>                     |    | Good Management Practices                                                                                                                                                                                    |
|              | aterial                      | 1. | Use integrated wastewater management and treatment strategy to reduce wastewater quantity and pollutant load                                                                                                 |
|              | E<br>D                       | 2. | Establishment of environmental management system                                                                                                                                                             |
|              | orte                         | 3. | Preparation of water flow diagrams and mass balances for water                                                                                                                                               |
|              | Recovery of sorted materials | 4. | Preparing a water efficiency action plan to reduce water use and prevent water pollution                                                                                                                     |
|              |                              | 5. | Providing technical trainings to the staff for the reduction and optimisation of water use                                                                                                                   |
|              | ~                            | 6. | Good production planning to optimise water consumption                                                                                                                                                       |
|              |                              | 7. | Determination of water efficiency targets                                                                                                                                                                    |
|              |                              | 8. | Monitoring the water used in production processes and auxiliary processes and the wastewater generated in terms of quantity and quality and adapting this information to the environmental management system |
|              |                              |    | General Water Efficiency BATs                                                                                                                                                                                |
|              |                              | 1. | Minimising spillages and leakages                                                                                                                                                                            |
|              |                              | 2. | Recovery of water from rinsing solutions and reuse of recovered water in processes appropriate to its quality                                                                                                |
|              |                              | 3. | Use of automatic hardware and equipment (sensors, smart hand washing systems, etc.) to save water at water usage points such as showers/toilets etc.                                                         |
|              |                              | 4. | Use of pressure washing systems for equipment cleaning, general cleaning, etc.                                                                                                                               |
|              |                              | 5. | Avoiding the use of drinking water in production lines                                                                                                                                                       |
|              |                              | 6. | Use of cooling water as process water in other processes                                                                                                                                                     |
|              |                              | 7. | Identification and minimisation of water losses                                                                                                                                                              |
|              |                              | 8. | Use of automatic control-close valves to optimise water use                                                                                                                                                  |
|              |                              | 9. | Construction of closed storage and impermeable waste/scrap sites to prevent the transport of toxic or hazardous chemicals for the aquatic environment                                                        |

| NACE<br>Code | NACE<br>Code<br>Description  |       | Prioritised Sectoral Water Efficiency Techniques                                                                                                                          |                                                                                                |
|--------------|------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 38.32        | Recovery of sorted materials | 10.   | Prevention of mixing of clean water flows with dirty water flows                                                                                                          |                                                                                                |
|              |                              | 11.   | Determination of wastewater streams that can be reused with or without treatment by characterising wastewater quantities and qualities at all wastewater generation point |                                                                                                |
|              |                              | 12.   | Use of closed loop water cycles in appropriate processes                                                                                                                  |                                                                                                |
|              |                              | 13.   | Untreated reuse of relatively clean wastewater from washing, rinsing and equipment cleaning in production processes                                                       |                                                                                                |
|              |                              | 14.   | Determination of the scope of reuse of washing and rinsing water                                                                                                          |                                                                                                |
|              |                              | 15.   | Separate collection and treatment of grey water in the facility and its use in areas that do not require high water quality (green area irrigation, floor washing, etc.)  |                                                                                                |
|              |                              | 16.   | Collecting rainwater and utilising it as an alternative water source in facility cleaning or in suitable areas                                                            |                                                                                                |
|              |                              |       | Precautions for Auxiliary Processes                                                                                                                                       |                                                                                                |
|              |                              | 1.    | Avoiding unnecessary cooling processes by identifying processes that need wet cooling                                                                                     |                                                                                                |
|              |                              | 2.    | Increasing the number of cycles by using corrosion and scale inhibitors in systems with closed water cycles                                                               |                                                                                                |
|              |                              | 3.    | Reducing water consumption by improving the quality of make-up water and increasing the number of cycles in closed loop cooling systems                                   |                                                                                                |
|              |                              |       | 4.                                                                                                                                                                        | Utilisation of hot water produced in the cogeneration system in processes for heating purposes |
|              |                              | 5.    | Utilisation of cold water produced in the cogeneration system in cooling processes                                                                                        |                                                                                                |
|              |                              | 6.    | Use of a closed-loop cooling system to minimise water use                                                                                                                 |                                                                                                |
|              |                              | 7.    | Collecting the water generated by surface runoff with a separate collection system and using it for purposes such as cooling water, process water, etc.                   |                                                                                                |
| A total c    | of 32 techi                  | niaue | es have been proposed in this sector.                                                                                                                                     |                                                                                                |

A total of 32 techniques have been proposed in this sector

#### Recycling of Sorted Materials for NACE Code;

- (i) Sector Specific Measures,
- (ii) Good Management Practices,
- (iii) General Water Efficiency BATs and
- (iv) Measures for auxiliary processes are given under separate headings.

## 2.1.1 Sector Specific Measures

### • Closed-loop utilisation-recovery or reuse of washing-rinsing wastewater, including chemical recovery

In industrial production processes, washing and rinsing wastewaters are relatively clean wastewater sources. Therefore, washing-rinsing wastewaters can be reused in production processes without treatment. On the other hand, in some processes, washing-rinsing wastewaters may contain some washing chemicals such as solvents to ensure effective washing. These wastewaters can be reused in the same processes by removing the residual chemical deficiencies they contain. In this way, a significant amount of chemical and water savings can be achieved in washing-rinsing processes. On the other hand, similar reductions in the amount of wastewater and chemical loads of wastewater can be achieved. The initial investment cost for the application is low (only piping, reserve tank requirement) and the payback period can be short.

# 2.1.2 Good Management Practices

#### • Establishment of environmental management system

Environmental Management Systems (EMS) include the organisational structure, responsibilities, procedures and resources required to develop, implement and monitor the environmental policies of industrial organisations. The establishment of an environmental management system improves the decision-making processes between raw materials, water and wastewater infrastructure, planned production process and different treatment techniques. Environmental management organises how resource supply and waste discharge demands can be managed with the highest economic efficiency, without compromising product quality and with the least possible impact on the environment.

The most widely used Environmental Management Standard is ISO 14001. Alternatives include the Eco Management and Audit Scheme Directive (EMAS) (761/2001). It was developed for the assessment, improvement and reporting of the environmental performance of enterprises. It is one of the leading practices within the scope of ecoefficiency (cleaner production) in EU legislation and voluntary participation is provided (TUBITAK MAM, 2016; MAF, 2021). The benefits of establishing and implementing an Environmental Management System are as follows:

- Economic benefits can be obtained by improving business performance (Christopher, 1998).
- International Standards Organisation (ISO) standards are adopted to ensure greater compliance with global legal and regulatory requirements (Christopher, 1998).
- While the risks of penalties related to environmental responsibilities are minimised, the amount of waste, resource consumption and operating costs are reduced (Delmas, 2009).
- The use of internationally recognised environmental standards eliminates the need for multiple registrations and certificates for businesses operating in different locations around the world (Hutchens Jr., 2017).
- Especially in recent years, the improvement of the internal control processes of companies is also considered important by consumers. The implementation of environmental management systems provides a competitive advantage against companies that do not adopt the standard. It also contributes to the better position of organisations in international areas / markets (Potoski & Prakash, 2005).

The above-mentioned benefits depend on many factors such as the production process, management practices, resource utilisation and potential environmental impacts (MAF, 2021). Practices such as preparing annual inventory reports with similar content to the environmental management system and monitoring the quantity and quality of inputs and outputs in production processes can save 3-5% of water consumption (Öztürk, 2014). The total duration of the development and implementation phases of the EMS takes an estimated 8-12 months (ISO 14001 User Manual, 2015).

Industrial organisations also carry out studies within the scope of ISO 14046 Water Footprint Standard, an international standard that defines the requirements and guidelines for assessing and reporting water footprint. With the implementation of the relevant standard, it is aimed to reduce the use of fresh water required for production and environmental impacts. In addition, ISO 46001 Water Efficiency Management Systems Standard, which helps industrial organisations to save water and reduce operating costs, helps organisations to develop water efficiency policies by conducting monitoring, benchmarking and review studies.

### • Use integrated wastewater management and treatment strategy to reduce wastewater quantity and pollutant load

Wastewater management should be based on a holistic approach from wastewater generation to final disposal and includes functional elements such as composition, collection, treatment including sludge disposal and reuse. The selection of the appropriate treatment technology for industrial wastewater depends on integrated factors such as land availability, desired treated water quality and compliance with national and local regulations (Abbassi & Al Baz, 2008).

On-site reuse of treated wastewater not only improves the quality of water bodies, but also reduces the demand for freshwater. It is therefore very important to identify appropriate treatment strategies for different reuse objectives.

In integrated industrial wastewater treatment, different aspects such as wastewater collection system, treatment process and reuse target are evaluated together (Naghedi et al., 2020). For industrial wastewater recovery, methods such as SWOT method (strengths, weaknesses, opportunities and threats), PESTEL method (political, economic, social, technological, environmental and legal factors), decision tree can be combined with expert opinions to determine the integrated wastewater management framework (Naghedi et al., 2020). The integration of Analytic Hierarchy Process (AHP) and CoCoSo techniques can be used to determine priorities based on multiple criteria for industrial wastewater management processes (Adar et al., 2021).

The implementation of integrated wastewater management strategies can lead to an average reduction of up to 25% in water consumption, wastewater quantity and pollution loads of wastewater. The potential payback period of the implementation varies between 1-10 years (MoAF, 2021).



http://www.asw-eg.com/en/images/products/116567Water-Sewage-Treatment-System-With-Plant-And-Facility.jpg and the support of the product of

Industrial Wastewater Treatment Plant

#### • Providing technical trainings to personnel for the reduction and optimisation of water use

With this measure, water saving and water recovery can be achieved by increasing the training and awareness of the personnel, and water efficiency can be achieved by reducing water consumption and costs. In industrial facilities, problems related to high water consumption and wastewater generation may arise due to the lack of necessary technical knowledge of the personnel. For example, it is important that cooling tower operators, which represent a significant proportion of water consumption in industrial operations, are properly trained and have technical knowledge. Determination of water quality requirements in production processes, measurement of water and wastewater quantities, etc. It is also necessary for the relevant personnel to have sufficient technical knowledge (MAF, 2021). Therefore, it is important to provide training to staff on water use reduction, optimisation and water saving policies. Practices such as involving the staff in water saving studies, creating regular reports on the amount of water use before and after water efficiency initiatives, and sharing these reports with the staff support participation and motivation in the process. The technical, economic and environmental benefits to be obtained through staff training yield results in the medium or long term (TUBITAK MAM, 2016; MAF, 2021).

• Monitoring the water used in production processes and auxiliary processes and the wastewater generated in terms of quantity and quality and adapting this information to the environmental management system There is resource utilisation in industrial facilities and there is resource utilisation as a result of resource utilisation.

Inefficiency and environmental problems may arise from input-output flows. For this reason Water and wastewater used in production processes and auxiliary processes should be monitored in terms of quantity and quality (TUBITAK MAM, 2016; MAF, 2021). Process-based quantity and quality monitoring together with other good management practices (personnel training, establishment of an environmental management system, etc.) can reduce energy consumption by 6-10%, water consumption and wastewater quantities by It can provide a reduction of up to 25% (Öztürk, 2014).

The main stages for monitoring water and wastewater in terms of quantity and quality are as follows

- Use of monitoring equipment (such as counters) to monitor water, energy, etc. consumption on a process basis,
- Establishment of monitoring procedures,
- Determining the usage/exit points of all inputs and outputs (raw materials, chemicals, water, products, wastewater, sludge, solid waste, hazardous waste and by-products) related to the production process, monitoring, documenting, comparative evaluation and reporting in terms of quantity and quality,
- Monitoring raw material losses in production processes where raw materials are transformed into products and taking measures against raw material losses (MoEU, 2020e).

#### • Good production planning to optimise water consumption

In industrial production processes, planning by using the least process in the process from raw material to product is an effective practice for reducing labour costs, resource use costs and environmental impacts and ensuring efficiency (TUBITAK MAM, 2016; MAF, 2021). Production planning in industrial plants, taking into account the water efficiency factor, reduces water consumption and wastewater amount. Modification of production processes in industrial plants or combining some processes provides significant benefits in terms of water efficiency and time planning (MAF, 2021).

#### • Preparing a water efficiency action plan to reduce water use and prevent water pollution

It is important for water efficiency to prepare an action plan that includes short, medium and long term actions to be taken in order to reduce water-wastewater quantities and prevent water pollution in industrial facilities. At this point, determination of water needs throughout the facility and in production processes, determination of quality requirements at water use points, wastewater generation points and wastewater characterisation should be carried out (MAF, 2021). At the same time, it is necessary to determine the measures to be implemented to reduce water consumption, wastewater generation and pollution loads, to make their feasibility and to prepare action plans for the short-medium-long term. In this way, water efficiency and sustainable water use are ensured in the facilities (MAF, 2021).

#### • Determination of water efficiency targets

The first step in achieving water efficiency in industrial facilities is to set targets (MAF, 2021). For this, a detailed water efficiency analysis should be carried out on the basis of processes. In this way, unnecessary water use, water losses, wrong practices affecting water efficiency, process losses, reusable water-wastewater sources with or without treatment, etc. can be determined. It is also very important to determine the water saving potential and water efficiency targets for each production process and the plant as a whole (MAF, 2021).

#### Preparation of water flow diagrams and mass balances for water

Determination of water use and wastewater generation points in industrial plants, establishment of water-wastewater balances in production processes and auxiliary processes other than production processes constitute the basis of many good management practices in general. Establishing process profiles throughout the plant and on the basis of production processes facilitates the identification of unnecessary water use points and high-water use points, evaluation of water recovery opportunities, process modifications and determination of water losses (MAF, 2021).

## 2.1.3 General Water Efficiency BATs

#### • Identification and minimisation of water losses

Water losses occur in equipment, pumps and pipelines in industrial production processes. Firstly, water losses should be identified and leakages should be prevented by regular maintenance of equipment, pumps and pipelines to keep them in good condition (IPPC BREF, 2003). Regular maintenance procedures should be established, paying particular attention to the following points:

- Adding pumps, valves, level switches, pressure and flow regulators to the maintenance checklist,
- Carrying out inspections not only in the water system, but also in particular in the heat transfer and chemical distribution systems, broken and leaking pipes, barrels, pumps and valves,
- Regular cleaning of filters and pipework,
- Calibrate, routinely check and monitor measuring equipment such as chemical measuring and dispensing devices, thermometers, etc. (IPPC BREF, 2003).

With effective maintenance-repair, cleaning and loss control practices, savings ranging from 1-6% in water consumption can be achieved (Öztürk, 2014).

#### • Minimising spillages and leakages

Both raw material and water losses can occur due to spills and leaks in enterprises. In addition, if wet cleaning methods are used to clean the areas where spillage occurs, water consumption, wastewater amounts and pollution loads of wastewater may also increase (MAF, 2021). In order to reduce raw material and product losses, spill and splash losses are reduced by using splash guards, flaps, drip trays, sieves (IPPC BREF, 2019).

### • Untreated reuse of relatively clean wastewater from washing, rinsing and equipment cleaning in production processes

In industrial plants, relatively clean wastewater such as washing-final rinse wastewater and filter backwash wastewater can be reused without treatment in floor washing and garden irrigation processes that do not require high water quality, saving between 1-5% in raw water consumption. The initial investment costs required for the application are the installation of new pipelines and reserve tanks (Öztürk, 2014).

#### • Prevention of mixing of clean water flows with polluted water flows

By determining the wastewater generation points in industrial facilities and characterising the wastewater, wastewater with high pollution load and relatively clean wastewater can be collected in separate lines (TUBITAK MAM, 2016; MAF, 2021). In this way, wastewater streams with appropriate quality can be reused with or without treatment. With the separation of wastewater streams, water pollution is reduced, treatment performances are improved, energy consumption can be reduced in relation to the reduction of treatment needs, and emissions are reduced by providing wastewater recovery and recovery of valuable materials. In addition, heat recovery from separated hot wastewater streams is also possible (TUBITAK MAM, 2016; MAF, 2021). Separation of wastewater streams generally requires high investment costs, and where it is possible to recover large amounts of wastewater and energy, costs can be reduced (IPPC BREF, 2006).

• Determination of wastewater streams that can be reused with or without treatment by characterising wastewater quantities and qualities at all wastewater generation points.

In industrial facilities, various types of wastewater are generated. Identifying and characterizing wastewater generation points within these facilities makes it possible to reuse different wastewater streams, either treated or untreated (Öztürk, 2014; TUBITAK MAM, 2016; MAF, 2021). In this context, filter backwash water, TO concentrates, blowdown water, condensate water, and relatively clean wash and rinse waters can be reused untreated in the same or different processes or in areas that do not require high water quality (such as facility and equipment cleaning). Additionally, wastewater streams that cannot be directly reused can be treated with appropriate technologies for reuse in production processes.

Membrane filtration processes are an integral part of many wastewater reuse systems. Nanofiltration (NF) and reverse osmosis (RO) filtration systems are used for industrial wastewater recovery. Microfiltration (MF) and ultrafiltration (UF) are generally used for pretreatment of water before it goes to NF or TO (Singh et al., 2014).

#### • Use of cooling water as process water in other processes

Water cooling systems are widely used in processes where thermal energy is used intensively and cooling is required. It is possible to recover heat by using heat exchangers in cooling water return, prevent contamination of cooling water, and save water and energy by increasing cooling water return rates (TUBITAK MAM, 2016; MAF, 2021). In addition, in case of separate collection of cooling water, it is generally possible to use the collected water for cooling purposes or to reuse it in appropriate processes (EC, 2009). Reuse of cooling water can save 2-9% of total water consumption (Greer et al., 2013). Energy consumption can be saved up to 10% (Öztürk, 2014; MAF, 2021).

#### • Determination of the scope of reuse of washing and rinsing water

In industrial plants, relatively clean wastewaters such as washing-final rinse wastewaters and filter backwash wastewaters can be reused without treatment in floor washing and garden irrigation processes that do not require high water quality (Öztürk, 2014). Thus, it is possible to save between 1-5% in raw water consumption (MAF, 2021).

#### • Use of pressure washing systems for equipment cleaning, general cleaning, etc.

Water nozzles are widely used in equipment plant cleaning. Effective results can be achieved by using correctly placed, appropriate nozzles to reduce water consumption and wastewater pollution loads. The use of active sensors and nozzles at points where high water consumption occurs and where possible is very important in terms of efficient use of water. It is possible to achieve significant water savings by replacing mechanical equipment with pressurised nozzles (TUBITAK MAM, 2016). Reducing water consumption, wastewater generation and wastewater pollution load through the use of water pressure optimised nozzles in technically appropriate processes are the main environmental benefits of the application.

#### • Use of automatic control-close valves to optimise water use

Monitoring and controlling water consumption using flow control devices, meters and computer-aided monitoring systems provide significant technical, environmental and economic advantages (Öztürk, 2014). Monitoring the amount of water consumed in the plant and in various processes prevents water losses (TUBITAK MAM, 2016). It is necessary to use flow meters and counters in the plant in general and in production processes in particular, to use automatic shut-off valves and valves in continuously operating machines, and to develop monitoring-control mechanisms according to water consumption and some determined quality parameters by using computer-aided systems (TUBITAK MAM, 2016). With this application, it is possible to save up to 20-30% of water consumption on process basis (DEPA, 2002; LCPC, 2010; IPPC BREF, 2003). By monitoring and controlling water consumption on a process basis, 3-5% savings can be achieved in process water consumption (Öztürk, 2014).

#### • Avoiding the use of drinking water in production lines

In different sub-sectors of the manufacturing industry, waters with different water quality can be used for production purposes. In industrial plants, raw water supplied from groundwater sources is generally used in production processes after treatment. However, in some cases, although it is costly in production processes, drinking water can be used directly or raw water is disinfected with chlorinated compounds and then used in production processes. These waters containing residual chlorine can react with organic compounds (natural organic substances (DOM)) in water in production processes and form disinfectant by-products harmful to living metabolisms (Özdemir & Toröz, 2010; Oğur et al.) The use of drinking water containing residual chlorine compounds or raw water disinfected with chlorinated compounds should be avoided as much as possible. Highly oxidising disinfection methods such as ultraviolet (UV), ultrasound (US) or ozone can be used instead of chlorine disinfection for disinfection of raw water. In order to increase the technical, economic and environmental benefits of the application, the determination and use of the water quality parameters required in each production process helps to reduce unnecessary water supply and treatment costs. With this application, it is possible to reduce water, energy and chemical costs (TUBITAK MAM, 2016).

### • Collecting rainwater and utilising it as an alternative water source in facility cleaning or in suitable areas

Nowadays, when water resources are decreasing, rainwater harvesting is frequently preferred especially in regions with low rainfall. There are different technologies and systems for rainwater collection and distribution systems. Cistern systems, ground infiltration, surface collection and filter systems are used. Rainwater collected with special drainage systems can be used for production processes, garden irrigation, tank and equipment cleaning, surface cleaning, etc. if it meets the required quality requirements (Tanık et al., 2015).

In various examples, roof rainwater collected in industrial facilities was stored and used inside the building and in landscape areas, resulting in 50% water saving in landscape irrigation (Yaman, 2009). Perforated stones and green areas can be preferred in order to increase the permeability of the ground and to allow rainwater to pass and absorb into the soil on the site (Yaman, 2009). Rainwater collected on building roofs can be used for car washing and garden irrigation. It is possible to recover and reuse 95% of the collected water by biological treatment after use (Şahin, 2010).

### • Recovery of water from rinsing solutions and reuse of recovered water in processes appropriate to its quality

Rinsing wastewaters in industrial plants are relatively clean wastewaters that can be reused without treatment in floor washing and garden irrigation processes that do not require high water quality (Öztürk, 2014). Recycling of rinsing wastewater reduces raw water consumption. Savings between 1-5% can be achieved.

#### • Use of closed loop water cycles in appropriate processes

Refrigerants are chemical compounds with certain thermodynamic properties that take heat from the substances to be cooled and cool them, affecting the performance of the cooling process (Kuprasertwong et al., 2021).

Water is used as a refrigerant in many processes in the manufacturing industry and in many processes led by the product cooling process. During this cooling process, water can be reused through cooling tower or central cooling systems. If unwanted microbial growth occurs in the cooling water, it can be controlled by adding chemicals to the recirculation water (TUBITAK MAM, 2016).

By reusing cooling water in processes such as cleaning, water consumption and the amount of wastewater generated are reduced. However, the need for energy for cooling and recirculation of cooling water is a side interaction.

Heat recovery is also provided by the use of heat exchangers in cooling water. Generally, closed loop systems are used in plants where aqueous cooling systems are used. However, cooling system blowdowns are discharged directly to the wastewater treatment plant channel. These blowdown waters can be reused in appropriate production processes.

### • Construction of closed storage and impermeable waste/scrap sites to prevent the transport of toxic or hazardous chemicals for the aquatic environment

Closed and impermeable waste/scrap storage sites can be constructed in industrial facilities in order to prevent the transport of toxic or hazardous chemicals for the aquatic environment to receiving environments. This practice is already being implemented in our country within the scope of existing environmental regulations. Within the scope of the field studies carried out, a separate collection channel can be constructed in the storage areas of toxic or hazardous substances in industrial facilities and the leachate can be collected separately and prevented from mixing into natural water environments.

### • Use of automatic hardware and equipment (sensors, smart hand washing systems, etc.) to save water at water usage points such as showers/toilets etc.

Water is very important in many sectors of the manufacturing industry, both for production processes and for personnel to meet the necessary hygiene standards. Water consumption in the production processes of industrial facilities can be provided in various ways, as well as water consumption savings can be achieved by using equipment such as sensor faucets and smart hand washing systems in the water usage areas of the personnel. Smart hand washing systems provide resource efficiency in addition to water saving while adjusting the water, soap and air mixture at the right rate.

### • Separate collection and treatment of grey water in the facility and its use in areas that do not require high water quality (green area irrigation, floor washing, etc.)

Wastewater generated in industrial facilities is not only industrial wastewater from production processes, but also includes wastewater from showers, sinks, kitchens, etc. Wastewater from shower, sink, kitchen etc. areas is called grey water. Water savings can be achieved by treating these grey waters with various treatment processes and using them in areas that do not require high water quality.

# 2.1.4 Precautions for Auxiliary Processes

#### BATs for cooling systems

#### • Use of a closed-loop cooling system to minimise water use

Closed loop cooling systems significantly reduce water consumption compared to open loop systems with more intensive water use. In closed loop systems, while the same water is recirculated within the system, it is usually necessary to add cooling water equal to the amount of water evaporated. By optimising cooling systems, evaporation losses can also be reduced.

### • Reducing water consumption by increasing the number of cycles in closed loop cooling systems and improving the quality of the make-up water

Water is used as a refrigerant in many processes such as production processes of the manufacturing industry and cooling of products. Water is recirculated through cooling tower or central cooling systems and cooling process is carried out. If an unwanted microbial growth occurs in the cooling water, it can be controlled by adding chemicals to the recirculation water (TUBITAK MAM, 2016). The number of cycles can be increased with good chemical conditioning in the recirculation process. In this way, the amount of fresh water fed to the system can be reduced and water saving can be achieved. In addition, good conditioning of the cooling make-up water can also increase the number of cycles (MAF, 2021).

### • Collecting the water generated by surface runoff with a separate collection system and using it for purposes such as cooling water, process water, etc.

In most industrial plants, wastewater is generated from process or non-process areas. The wastewater generated can be treated and reused in appropriate places. Savings can be achieved at varying rates in various industrial plants by reusing the wastewater generated in the plant after treatment. Water generated by surface runoff can be collected with a separate collection system and used as cooling water (MAF, 2021).

### • Increasing the number of cycles by using corrosion and scale inhibitors in systems with closed water cycles

Chiller towers and evaporative condensers, air conditioning and industrial process cooling systems are efficient and low-cost systems that remove the heat (IPPC BREF, 2001b; MAF, 2021). In these systems, more than 95% of the circulating water can be recovered (TUBITAK MAM, 2016). In cooling systems, impurities remain in the recirculating water due to the evaporation of a portion of the recirculating water and impurity concentrations gradually increase in each cycle. Impurities that can be included in the cooling system together with air can cause contamination in recirculation water (TUBITAK MAM, 2016). If impurities and contaminants are not effectively controlled, they can cause scaling and corrosion, unwanted biological growth and sludge accumulation. This can become a chronic problem leading to reduced efficiency of heat transfer surfaces and increased operating costs. In this case, it is necessary to implement a water treatment programme specifically designed for the quality of the feed water supplied to the cooling system, the cooling water system construction material and operating conditions. In this context; blowdown control, control of biological growth, corrosion control, avoidance of hard water, use of sludge control chemicals, filtration and screening systems may be appropriate (TUBITAK MAM, 2016). The establishment and periodic implementation of an effective cleaning procedure and programme is also a good management practice for the protection of cooling systems. Corrosion is one of the most important problems in cooling systems. In tower recirculation water, dissolved solids (sulphate, chloride, carbonate, etc.) that cause corrosion as a result of the formation of limestone and deposits on the walls as the degree of hardness increases will cause corrosion on the surface over time. In addition, the formation of deposits reduces energy efficiency by negatively affecting heat transfer. In order to prevent these problems, chemical treatment programme should be applied to prevent scale and corrosion, disinfection with biological activation inhibitor biocide, cooling towers in use should be subjected to chemical and mechanical cleaning at least twice a year to remove deposits, hardness and conductivity values of the make-up water should be as low as possible (IPPC BREF, 2001; Kayabek et al., 2005). In order to improve the quality of the makeup water, it may be necessary to treat (condition) it using an appropriate treatment system. In addition, unwanted microbial growth should be kept under control (IPPC BREF, 2001b; MAF, 2021). Blowdown occurs in cooling systems as well as in steam boilers due to micro-residues and deposits in the cooling water. The deliberate draining of the cooling system to stabilise the increasing concentration of solids in the cooling system is called cooling blowdown. By pre-treatment of cooling water with appropriate methods and continuous monitoring of cooling water quality, biocide usage and blowdown amounts can be reduced (TUBITAK MAM, 2016). Although the investment cost depends on the scale of the application, the payback period for the expected investment costs varies between 3 and 4 years (IPPC BREF, 2001).

#### • Avoiding unnecessary cooling processes by identifying processes that need wet cooling

The boundaries of the plant site affect design parameters such as cooling tower height. In cases where it is necessary to reduce the tower height, a hybrid cooling system can be applied. Hybrid cooling systems are a combination of evaporative and non-evaporative (wet and dry) cooling systems. Depending on the ambient temperature, the hybrid cooling tower can be operated as a fully wet cooling tower or as a combined wet/dry cooling tower (TUBITAK MAM, 2016). In regions where there is not enough cooling water or where water costs are high, the evaluation of dry cooling systems or hybrid cooling systems can be an effective solution to reduce the amount of cooling booster water (TUBITAK MAM, 2016).

#### BATs for cogeneration system

- *Utilisation of hot water produced in the cogeneration system in processes for heating purposes*By integrating cooling systems into cogeneration systems (trigeneration), it is possible to convert efficiency losses of 10-30% into hot water, steam, cold air, hot air, and water (which requires the use of absorption heat exchangers). This allows a portion of the energy required for processes like
  - use of absorption heat exchangers). This allows a portion of the energy required for processes like cooling and drying within the facility to be supplied from waste heat generated in the cogeneration systems. Facilities utilizing cogeneration systems can reduce energy costs by up to 40% (TUBITAK MAM, 2016).
- Using the cold water produced in the cogeneration system in cooling processes

It is possible to save water by utilising the cold water produced in the cogeneration system in cooling processes (TUBITAK MAM, 2016).

### Bibliography

- Abbassi, B., & Al Baz, I. (2008). Integrated Wastewater Management: A Review. https://doi. org/10.1007/978-3-540-74492-4\_3.
- Adar, E., Delice, E., & Adar, T. (2021). Prioritising of industrial wastewater management processes using an integrated AHP-CoCoSo model: comparative and sensitivity analyses. International Journal of Environmental Science and Technology, 1-22.
- Christopher, S. (1998). ISO 14001 and Beyond Environmental Management Systems in the Real World.
- MoEU. (2020e). Cleaner Production Practices in Certain Sectors Project. Republic of Turkey Ministry of Environment, Urbanisation and Climate Change General Directorate of Environmental Management.
- Delmas, M. (2009). Erratum to "Stakeholders and Competitive Advantage: The Case of ISO 14001. doi:10.1111/j.1937-5956.2004.tb00226.x.
- DEPA. (2002). Danish Environmental Protection Agency (DEPA). Danish Experience, Best Avaible Techniques-Bat in the Clothing and Textile Industry.
- EC. (2009). Source Document on Optimal Techniques for Energy Efficiency. European Commission.
- Greer, L., Keane, S., Lin, C., & James, M. (2013). Natural Resources Defence Council's 10 Best Practices for Textile Mills to Save Money and Reduce Pollution. Natural Resources Defence Council.
- Hutchens Jr., S. (2017). Using ISO 9001 or ISO 14001 to Gain a Competitive Advantage.
- IPPC BREF. (2001b). Reference Document on the application of Best Available Techniques to Industrial Cooling Systems. Integrated Pollution Prevention and Control (IPPC).
- IPPC BREF. (2003). Reference Document on Best Available Techniques for the Textiles Industry. Retrieved from https://eippcb.jrc.ec.europa.eu/reference
- IPPC BREF. (2006). European Commission (EC) Integrated Pollution Prevention and Control Reference Document on Best Available Techniques for the Surface Treatment of Metals and Plastics.
- IPPC BREF. (2019). Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. https://eippcb.jrc.ec.europa.eu/reference.
- ISO 14001 User Manual. (2015). Generic ISO 14001 EMS Templates User Manual.
- Kayabek, C. Y., Yildirim, A. S., & Ince, F. (2005). Maintenance and Disinfection in Open Cycle Cooling Systems (OCSCS). Journal of Tesisat Engineering, Issue: 88, pp. 35-39,.
- Kuprasertwong, N., Padungwatanaroj, O., Robin, A., Udomwong, K., Tula, A., Zhu, L., . . Gani, R. (2021). Computer-Aided Refrigerant Design: New Developments.
- LCPC. (2010). Lebanese Cleaner Production Centre. Cleaner Production Guide for Textile Industries.
- Naghedi, R., Moghaddam, M., & Piadeh, F. (2020). Creating functional group alternatives in integrated industrial wastewater recycling system: A case study of Toos Industrial Park (Iran). Journal of Cleaner Production. doi:https://doi.org/10.1016/j.jclepro.2020.120464.
- Oğur, R., Tekbaş, Ö. F., & Hasde, M. (2004). Chlorination Guide: Chlorination of Drinking and Potable Water. Ankara: Gülhane Military Medical Academy, Department of Public Health.
- Özdemir, K., & Toröz, İ. (2010). Monitoring of Chlorination By-Products in Drinking Water Sources by Differential UV Spectroscopy Method. ITU Journal.
- Öztürk, E. (2014). Integrated Pollution Prevention and Control and Cleaner Production Practices in Textile Sector. Isparta.
- Potoski, M., & Prakash, A. (2005). Green Clubs and Voluntary Governance: ISO 14001 and Firms' Regulatory Compliance. American Journal of Political Science, 235-248.
- Singh, M., Liang, L., Basu, A., Belsan, M., Hallsby, G., & Morris, W. (2014). 3D TRASAR™ Technologies for Reliable Wastewater Recycling and Reuse. doi:10.1016/B978-0-08-099968-5.00011-8.
- Sahin, N. I. (2010). Water Conservation in Buildings. Istanbul: Master Thesis, Istanbul Technical University Institute of Science and Technology.
- Tanık, A., Öztürk, İ., & Cüceloğlu, G. (2015). Reuse of Treated Wastewater and Rainwater Harvesting Systems (Handbook). Ankara: Union of Municipalities of Turkey.
- MAF. (2021). Technical Assistance Project for Economic Analyses and Water Efficiency Studies within the Scope of River Basin Management Plans in 3 Pilot Basins. Republic of Turkey Ministry of Agriculture and Forestry.
- TUBİTAK MAM. (2016). Determination of Cleaner Production Opportunities and Applicability in Industry (SANVER) Project, Final Report. Scientific and Technological Research Council of Turkey Marmara Research Centre.
- Yaman, C. (2009). Siemens Gebze Facilities Green Building. IX. National Installation Engineering Congress.



Reşitpaşa District Katar St. Arı Technopolicet 1 2/5, D:12, 34469 Sarıyer/Istanbul

(0212) 276 65 48

www.iocevre.com