MINISTRY OF AGRICULTURE AND FORESTRY GENERAL DIRECTORATE OF WATER MANAGEMENT

Water Efficiency
Guidance Documents Series

MANUFACTURE OF PESTICIDES AND OTHER AGRO-CHEMICAL PRODUCTS

NACE CODE: 20.20

ANKARA 2023

It was commissioned by the Ministry of Agriculture and Forestry, General Directorate of Water Management to the Contractor io environmental solutions R&D Ltd.

All rights reserved.
This document and its contents may not be used or reproduced without the permission of the General Directorate of Water Management.

Table of Contents

	Abbreviations	4
1	Introduction	5
2	Scope of the Study	8
2.1	Manufacture of pesticides and other agro-chemical products	10
2.1.1	Sector Specific Measures	14
2.1.2	Good Management Practices	15
2.1.3	General Water Efficiency BATs	18
2.1.4	Precautions for Auxiliary Processes	26
	Bibliography	27

Abbreviations

WTP	Wastewater Treatment Plant
EU	European Union
SSM	Suspended Solid Matter
BREF	Best Available Techniques Reference Document
EMS	Environmental Management System
MEUCC	Republic of Turkey Ministry of Environment, Urbanisation and Climate Change
NOM	Natural Organic Matter
EMAS	Eco-Management and Audit Programme Directive
EPA	United States Environmental Protection Agency
IPPC	Industrial Pollution Prevention and Control
ISO	International Standards Organisation
BAT	Best Available Techniques
NACE	Statistical Classification of Economic Activities
GDWM	General Directorate of Water Management
RO	Reverse Osmosis
MAF	Republic of Turkey Ministry of Agriculture and Forestry
TSI	Turkish Statistical Institute
NF	Nanofiltration
MF	Microfiltration
UF	Ultrafiltration
GW	Groundwater
SW	Surface Water

1 Introduction

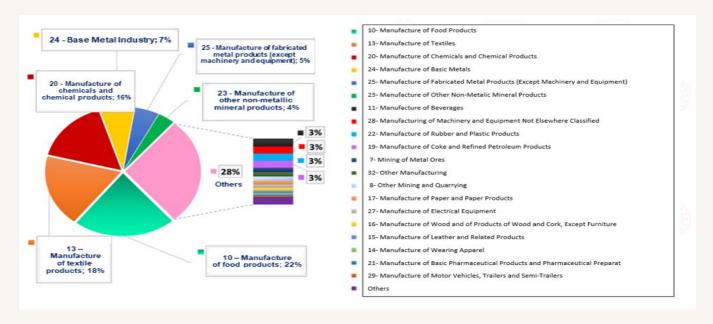
Our country is located in the Mediterranean basin, where the effects of global climate change are felt intensely, and is considered to be among the regions that will be most affected by the negative effects of climate change. Projections on how our water resources in our basins will be affected in the future due to climate change show that our water resources may decrease by up to 25 per cent in the next hundred years.

For the year 2022, the annual amount of water available per capita in Turkey is 1,313 m³ and it is expected that the annual amount of water available per capita will fall below 1,000 cubic metres after 2030 due to human pressures and the effects of climate change. If the necessary measures are not taken, it is obvious that Turkey will become a country suffering from water scarcity in the very near future and will bring many negative social and economic consequences. As can be understood from the results of future projections, the risk of drought and water scarcity awaiting our country necessitates the efficient and sustainable use of our existing water resources.

The concept of water efficiency can be defined as "using the least amount of water in the production of a product or service". The water efficiency approach is based on the rational, sharing, equitable, efficient and effective use of water in all sectors, especially in drinking water, agriculture, industry and household use, in a way that protects water in terms of quantity and quality and takes into account not only the needs of humans but also the needs of all living things with ecosystem sensitivity.

With the increasing demand for water resources, the change in precipitation and temperature regimes as a result of climate change, the increase in population, urbanisation and pollution, the fair and balanced distribution of usable water resources among users is becoming more and more important every day. For this reason, it has become a necessity to create a road map based on efficiency and optimisation in order to protect and use limited water resources through sustainable management practices.

In the vision of sustainable development set by the United Nations, *Goal 7: Ensuring Environmental Sustainability* from the Millennium Development Goals and *Goal 9: Industry, Innovation and Infrastructure* and *Goal 12: Responsible Production and Consumption* from the Sustainable Development Goals include issues such as efficient, fair and sustainable use of resources, especially water, environmentally friendly production and consumption with the concern of future generations.


In the European Green Deal Action Plan prepared by our country within the scope of the European Green Deal Action Plan, in which member countries agreed on the objectives such as implementing a clean, circular economy model with a carbon neutral target, expanding the efficient use of resources and reducing environmental impacts, actions emphasising water and resource efficiency in production and consumption in various fields, especially in industry, have been determined.

The "Industrial Emissions Directive (EED)", which is one of the most important components of the European Union environmental legislation in terms of industry, includes measures to be taken for the control, prevention or reduction of discharges/emissions from industrial activities to the receiving environment, including air, water and soil, with an integrated approach. In the Directive, Best Available Techniques (BAT) are presented in order to systematise the applicability of cleaner production processes and to eliminate difficulties in implementation. BATs are the most effective implementation techniques for a high level of environmental protection, taking into account their costs and benefits. In accordance with the Directive, Reference Documents (BAT-BREF) have been prepared for each sector in which BATs are explained in detail. In BREF documents, BATs are presented in a general framework such as good management practices, techniques as general measures, chemical use and management, techniques for various production processes, wastewater management, emission management and waste management.

The Ministry of Agriculture and Forestry, General Directorate of Water Management carries out activities aimed at disseminating efficient practices in urban, agricultural, industrial and individual water use and raising social awareness. Water efficiency action plans addressing all sectors and stakeholders were prepared within the scope of the "Water Efficiency Strategy Document and Action Plan (2023-2033) within the Framework of Adaptation to a Changing Climate", which entered into force with the Presidential Circular No. 2023/9. In the Industrial Water Efficiency Action Plan, a total of 12 actions have been determined for the period 2023-2033 and responsible and relevant institutions have been assigned for these actions. Within the scope of the Action Plan, the General Directorate of Water Management is responsible for carrying out studies to determine specific water use ranges and quality requirements on the basis of sub-sectors in industry, organising technical training programmes and workshops on sectoral basis and preparing water efficiency guidance documents.

On the other hand, with the "Industrial Water Use Efficiency Project by NACE Codes" carried out by the General Directorate of Water Management of the Ministry of Agriculture and Forestry, the best sectoral techniques specific to our country were determined within the scope of studies on improving water efficiency in industry. As a result of the study, sectoral guidance documents and action plans categorised by NACE codes, including the measures recommended for improving water use efficiency in sectors with high water consumption operating in our country, were prepared.

As in the world, the sectors with the highest share in water consumption in our country are food, textile, chemical and basic metal sectors. Within the scope of the studies, field visits were carried out in enterprises representing 152 sub-sectors in 35 main sectors, especially food, textile, chemical and basic metal industries, which represent production areas with different capacities and diversity within the scope of NACE Codes operating in our country and with high water consumption, and data on water supply, sectoral water use, wastewater generation, recycling were obtained and information was provided on best available techniques (BAT) and sectoral reference documents (BREF), water efficiency, clean production, water footprint, etc. published by the European Union.

Sectoral distribution of water uses in industry in Türkiye

As a result of the studies, specific water consumption and potential saving rates for the processes of enterprises for 152 different 4-digit NACE codes with high water consumption were determined, and water efficiency guidance documents were prepared by taking into account the EU best available techniques (BAT) and other cleaner production techniques. Within the guidelines, 500 techniques (BAT) for water efficiency;

(i) Good Management Practices, (ii) General Measures, (iii) Measures Related to Auxiliary Processes and (iv) Sector Specific Measures.

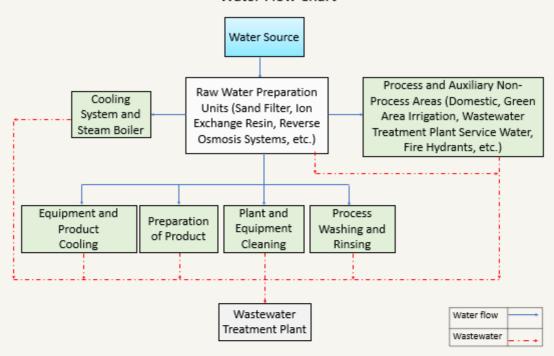
Within the scope of the project, environmental benefits, operational data, technical specifications-requirements and applicability criteria were taken into consideration during the determination of BATs for each sector. In the determination of BATs, not only BREF documents were not limited, but also different data sources such as current literature data on a global scale, real case analyses, innovative practices, reports of sector representatives were examined in detail and sectoral BAT lists were created. In order to evaluate the suitability of the BAT lists created for the local industrial infrastructure and capacity of our country, the BAT lists prepared specifically for each NACE code were prioritised by the enterprises by scoring them on the criteria of water saving, economic savings, environmental benefit, applicability, cross-media impact and the final BAT lists were determined using the scoring results. Water and wastewater data of the facilities visited within the scope of the project and the final BAT lists, which were prioritised by sectoral stakeholders and determined by taking into account the local dynamics specific to our country, were used to create sectoral water efficiency guides on the basis of NACE code.

2 Scope of the Study

Guidance documents prepared within the scope of water efficiency measures in industry cover the following main sectors:

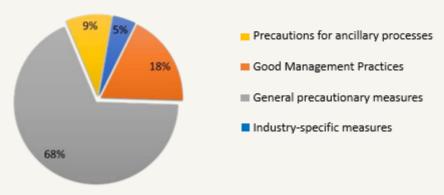
- Crop and animal production and hunting and related service activities (including sub-production area represented by 6 four-digit NACE codes)
- Fisheries and aquaculture (including sub-production area represented by 1 four-digit NACE Code)
- Coal and lignite extraction (including sub-production area represented by 2 four-digit NACE codes)
- Service activities in support of mining (including sub-production area represented by 1 four-digit NACE Code)
- Metal ores mining (including the sub-production area represented by 2 four-digit NACE codes)
- Other mining and guarrying (including the sub-production area represented by 2 four-digit NACE codes)
- Manufacture of food products (including 22 sub-production areas represented by four-digit NACE codes)
- Manufacture of beverages (including the sub-production area represented by 4 four-digit NACE codes)
- Manufacture of tobacco products (including sub-production area represented by 1 four-digit NACE Code)
- Manufacture of textile products (including 9 sub-production areas represented by four-digit NACE codes)
- Manufacture of articles of clothing (including sub-production area represented by 1 four-digit NACE Code)
- Manufacture of leather and related products (including sub-production area represented by 3 four-digit NACE codes)
- Manufacture of wood, wood products and cork products (except furniture); manufacture of articles made of thatch, straw and similar materials (including sub-production area represented by 5 four-digit NACE Codes)
- Manufacture of paper and paper products (including sub-production area represented by 3 four-digit NACE codes)
- Manufacture of coke and refined petroleum products (including sub-production area represented by 1 four-digit NACE Code)
- Manufacture of chemicals and chemical products (including 13 sub-production areas represented by four-digit NACE codes)
- Manufacture of basic pharmaceutical products and pharmaceutical ingredients (including sub-production area represented by 1 four-digit NACE Code)
- Manufacture of rubber and plastic products (including sub-production area represented by 6 four-digit NACE codes)
- Manufacture of other non-metallic mineral products (including 12 sub-production areas represented by fourdigit NACE codes)
- Basic metal industry (including 11 sub-production areas represented by four-digit NACE codes)
- Manufacture of fabricated metal products (except machinery and equipment) (including 12 sub-production areas represented by four-digit NACE codes)
- Manufacture of computers, electronic and optical products (including sub-production area represented by 2 four-digit NACE codes)
- Electrical equipment manufacturing (including sub-production area represented by 7 four-digit NACE codes)
- Manufacture of machinery and equipment not elsewhere classified (including sub-production area represented by 8 four-digit NACE codes)
- Manufacture of motor vehicles, trailers (semi-trailers) and semi-trailers (semi-trailers) (including subproduction area represented by 3 four-digit NACE codes)
- Manufacture of other transport equipment (including sub-production area represented by 2 four-digit NACE codes)
- Other manufacturing (including 2 sub-production areas represented by four-digit NACE codes)
- Installation and repair of machinery and equipment (including sub-production area represented by 2 four-digit NACE codes)
- Electricity, gas, steam and ventilation system production and distribution (including sub-production area represented by 2 four-digit NACE codes)
- Waste collection, reclamation and disposal activities; recovery of materials (including sub-production area represented by 1 four-digit NACE Code)
- Construction of non-building structures (including sub-production area represented by 1 four-digit NACE Code)
- Warehousing and supporting activities for transport (including sub-production area represented by 1 four-digit NACE Code)

- Accommodation (including sub-production area represented by 1 four-digit NACE Code)
- Educational Activities (Higher Education Campuses) (including sub-production area represented by 1 four-digit NACE Code)
- Sporting activities, leisure and recreation activities (including sub-production area represented by 1 four-digit NACE Code)


Manufacture of chemicals and chemical products

Under the chemicals and chemical products manufacturing sector, the sub-production branches for which guidance documents were prepared are as follows

20.11	Manufacture of industrial gases
20.12	Manufacture of dyestuffs and pigments
20.13	Manufacture of other inorganic basic chemicals
20.14	Manufacture of other organic basic chemicals
20.15	Manufacture of chemical fertilisers and nitrogen compounds
20.16	Manufacture of plastic raw materials in primary form
20.17	Manufacture of synthetic rubber in primary form
20.20	Manufacture of pesticides and other agro-chemical products
20.30	Manufacture of paints, varnishes and similar coating materials, printing inks and pastes
20.41	Manufacture of soaps and detergents, cleaning and polishing agents
20.42	Manufacture of perfumes, cosmetics and personal care products
20.59	Manufacture of other chemical products not elsewhere classified
20.60	Manufacture of man-made or synthetic fibres


2.1 Manufacture of Pesticides and Other Agrochemical Products (NACE 20.20)

Manufacture of Pesticides and Other Agro-chemical Product Sector Water Flow Chart

	Minimum	Maximum
Specific Water Consumption of the Facilities Visited within the Scope of the Project (L/kg product)	0,3	1,31
Reference Specific Water Consumption (L/kg	0,1	6

Percentage Distribution of Water Efficiency Applications

The raw materials supplied in the pesticides and other agrochemical products manufacturing sector are mixed in certain ratios (with the addition of deionised water when necessary) in the manufacturing vats using appropriate equipment in the order specified in the preparation recipes. The conformity of the semi-finished product obtained is checked in the quality control laboratory. As a result of the control, if necessary, the semi-finished product is taken back to the manufacturing boiler. If the control result is appropriate, it is transferred from the production vats to the filling machines. The products filled into bottles with filling machines are packaged by capping-labelling processes and are ready for sale by being stored.

In the manufacture of pesticides and other agrochemical products, in addition to the water directly added to the product content, there is also water consumption for equipment and product cooling, process washing and rinsing. In addition, significant water consumption occurs for filter washing, resin regeneration and membrane cleaning processes in raw water preparation units such as activated carbon filter, ion exchange resin, reverse osmosis, which are used to supply demineralised water required in the sector. Water consumption also occurs in auxiliary units such as cooling towers and steam boilers.

The reference specific water consumption in the manufacture of pesticides and other agrochemical products is in the range of 0.1 - 6 L/kg. The specific water consumption of the production branch analysed within the scope of the study is 0.30 - 1.31 L/kg. With the application of sector-specific techniques, good management practices, general measures and measures related to auxiliary processes, it is possible to achieve water savings of 24 - 91% in the sector.

20.20 Manufacture of pesticides and other agrochemical products Priority water efficiency implementation techniques recommended under the NACE code are presented in the table below.

NACE Code	NACE Code Description		Prioritised Sectoral Water Efficiency Techniques
20.20			Sector Specific Measures
		1.	Waterless cleaning in formulation plants
	cal	2.	Use of product-oriented equipment in formulation plants
	emi		Good Management Practices
	and other agro-chemical	1.	Use integrated wastewater management and treatment strategy to reduce wastewater quantity and pollutant load
	. ag	2.	Establishment of environmental management system
	her	3.	Preparation of water flow diagrams and mass balances for water
	and ot	4.	Preparing a water efficiency action plan to reduce water use and prevent water pollution
	ides a	5.	Providing technical trainings to personnel for the reduction and optimisation of water use
	stic	6.	Good production planning to optimise water consumption
	f pe	7.	Determination of water efficiency targets
	Manufacture of pesticides products	8.	Monitoring the quantity and quality of water used in production processes and auxiliary processes and the wastewater generated and adapting this information to the environmental management system
	Manufact products		Measures in the nature of General Measures
	Ma	1.	3 1 3
		2.	Recovery of water from rinsing solutions and reuse of recovered water in processes appropriate to its quality
		3.	Use of automatic hardware and equipment (sensors, smart hand washing systems, etc.) that will save water at water usage points such as showers/toilets etc.
		4.	Use of pressure washing systems for equipment cleaning, general cleaning, etc.
		5.	Reducing water consumption by reusing filter wash water in filtration processes, reusing relatively clean cleaning water in production processes and using clean-in-place systems (CIP)
		6.	Avoiding the use of drinking water in production lines
		7.	Identification and minimisation of water losses
		8.	Use of automatic control-close valves to optimise water use
		9.	Documented production procedures are kept and used by employees to prevent water and energy wastage
		10.	Reuse of pressurised filtration backwash water prior to water softening at appropriate points
		11.	Frequency and duration of regeneration in water softening systems including rinses)

NACE Code	NACE Code Description		Prioritised Sectoral Water Efficiency Techniques
20.20	- -	1.	Construction of closed storage and impermeable waste/scrap sites to prevent the transport of toxic or hazardous chemicals for the aquatic environment
	o-chemic	2.	Storage and storage of substances (such as oils, emulsions, binders) that pose a risk in the aquatic environment and prevention of their mixing with wastewater after use
	ıgro	3.	Prevention of mixing of clean water flows with polluted water flows
	Manufacture of pesticides and other agro-chemical products	4.	Determination of wastewater flows that can be reused with or without treatment by characterising the wastewater quantities and qualities at all wastewater generation points
	les an	5.	Use of computer aided control systems in production processes
	esticid	6.	Untreated reuse of relatively clean wastewater from washing, rinsing and equipment cleaning in production processes
	e of p	7.	Determination of the scope of reuse of washing and rinsing water
	Manufactur products	8.	Separate collection and treatment of grey water in the facility and its use in areas that do not require high water quality (green area irrigation, floor washing, etc.)
	Ma	9.	Implementation of time optimisation in production and arrangement of all processes to be completed as soon as possible
		10.	Collecting rainwater and utilising it as an alternative water source in facility cleaning or in suitable areas
		11.	Preventing the need for rinsing between activities by using compatible chemicals in sequential processes
		12.	Reuse of nanofiltration (NF) or reverse osmosis (RO) concentrates with or without treatment depending on their characterisation
			Precautions for Auxiliary Processes
		1.	Avoiding unnecessary cooling processes by identifying processes that need wet cooling
		2.	Use of a closed-loop cooling system to minimise water use

Manufacture of pesticides and other agro-chemical products orientated to NACE Code;

- (i) Sector Specific Measures,
- (ii) Good Management Practices,
- (iii) General Precautions and
- (iv) Measures for auxiliary processes are given under separate headings.

2.1.1 Sector Specific Measures

Waterless cleaning in formulation plants

As part of waterless cleaning, solid carriers such as clay can be used for equipment cleaning. These materials can be used to absorb and remove products left in the equipment and can then be utilised in the next formulation order of the same product. In addition, hoses and pipes can be cleaned by blowing air into the equipment for waterless equipment cleaning and reusing the removed material. Brushes and industrial vacuum cleaners can also be used for waterless cleaning.

Use of product-oriented equipment in formulation plants

In formulation plants, different products are produced in production lines. When switching to a different product, equipment is cleaned using water (in some cases solvent) to prevent contamination of the new product. Where possible, separating each line for the formulation and packaging of a different product can prevent the wastewater generated by cleaning during production changes. Where this is not feasible, it is recommended to plan the production process in such a way as to minimise cleaning operations (i.e. producing a large quantity of one product and then switching to the next product, rather than frequently changing the product being produced on the production line).

212 Good Management Practices

• Establishment of environmental management system

Environmental Management Systems (EMS) include the organisational structure, responsibilities, procedures and resources required to develop, implement and monitor the environmental policies of industrial enterprises. The establishment of an environmental management system improves organisations' decision-making processes between raw materials, water-wastewater infrastructure, planned production process and different treatment techniques. Environmental management organises how resource supply and waste discharge demands can be managed with the highest economic efficiency, without compromising product quality and with the least possible impact on the environment.

The most widely used Environmental Management Standard is ISO 14001. Alternatives include the Eco Management and Audit Scheme Directive (EMAS) (761/2001). It was developed for the assessment, improvement and reporting of the environmental performance of enterprises. It is one of the leading practices within the scope of eco-efficiency (clean production) in EU legislation and voluntary participation is provided (TUBITAK MAM, 2016; TOB, 2021). The benefits of establishing and implementing an Environmental Management System are as follows:

- Economic benefits can be obtained by improving business performance (Christopher, 1998).
- International Standards Organisation (ISO) standards are adopted to ensure greater compliance with global legal and regulatory requirements (Christopher, 1998).
- While the risks of penalties related to environmental responsibilities are minimised, the amount of waste, resource consumption and operating costs are reduced (Delmas, 2009).
- The use of internationally recognised environmental standards eliminates the need for multiple registrations and certificates for businesses operating in different locations around the world (Hutchens Jr., 2017).
- Especially in recent years, the improvement of the internal control processes of companies is also considered important by consumers. The implementation of environmental management systems provides a competitive advantage against companies that do not adopt the standard. It also contributes to the better position of organisations in international areas / markets (Potoski & Prakash, 2005).

The above-mentioned benefits depend on many factors such as the production process, management practices, resource utilisation and potential environmental impacts (TOB, 2021). Practices such as preparing annual inventory reports with similar content to the environmental management system and monitoring inputs and outputs in terms of quantity and quality in production processes can save 3-5% of water consumption (Öztürk, 2014). The total duration of the development and implementation phases of the EMS takes an estimated 8-12 months (ISO 14001 User Manual, 2015). Industrial organisations also carry out studies within the scope of ISO 14046 Water Footprint Standard, an international standard that defines the requirements and guidelines for assessing and reporting water footprint. With the implementation of the relevant standard, it is aimed to reduce the use of fresh water required for production and environmental impacts. In addition, ISO 46001 Water Efficiency Management Systems Standard, which helps industrial organisations to save water and reduce operating costs, helps organisations to develop water efficiency policies by conducting monitoring, benchmarking and review studies.

• Providing technical trainings to personnel for the reduction and optimisation of water use

With this measure, water saving and water recovery can be achieved by increasing the training and awareness of the personnel, and water efficiency can be achieved by reducing water consumption and costs. In industrial facilities, problems related to high water consumption and wastewater generation may arise due to the lack of necessary technical knowledge of the personnel. For example, it is important that cooling tower operators, which represent a significant proportion of water consumption in industrial operations, are properly trained and have technical knowledge. Determination of water quality requirements in production processes, measurement of water and wastewater quantities, etc. It is also necessary for the relevant personnel to have sufficient technical knowledge (TOB, 2021). Therefore, it is important to provide training to staff on water use reduction, optimisation and water saving policies. Practices such as involving the staff in water saving studies, creating regular reports on the amount of water use before and after water efficiency initiatives, and sharing these reports with the staff support participation and motivation in the process. The technical, economic and environmental benefits to be obtained through staff training yield results in the medium or long term (TUBITAK MAM, 2016; TOB, 2021).

Monitoring the quantity and quality of water used in production processes and auxiliary processes and the wastewater generated and adapting this information to the environmental management system

There is resource utilisation in industrial facilities, and inefficiency and environmental problems resulting from resource utilisation may arise from input-output flows. Therefore, water and wastewater used in production processes and auxiliary processes should be monitored in terms of quantity and quality (TUBITAK MAM, 2016; TOB, 2021). Process-based quantity and quality monitoring, together with other good management practices (personnel training, establishment of an environmental management system, etc.), can reduce energy consumption.

6-10%, and up to 25% reduction in water consumption and wastewater amounts (Öztürk, 2014).

The main stages for monitoring water and wastewater in terms of quantity and quality are as follows

- Use of monitoring equipment (such as counters) to monitor water, energy, etc. consumption on a process basis,
- Establishment of monitoring procedures,
- Determining the use/exit points of all inputs and outputs (raw materials, chemicals, water, products, wastewater, sludge, solid waste, hazardous waste and by-products) related to the production process, monitoring, documenting, comparative evaluation and reporting in terms of quantity and quality,
- Monitoring raw material losses in production processes where raw materials are transformed into products and taking measures against raw material losses (MoEU, 2020e).

Preparation of water flow diagrams and mass balances for water

Determination of water use and wastewater generation points in industrial plants, establishment of water-wastewater balances in production processes and auxiliary processes other than production processes constitute the basis of many good management practices in general. Establishing process profiles throughout the plant and on the basis of production processes facilitates the identification of unnecessary water use points and high water use points, evaluation of water recovery opportunities, process modifications and determination of water losses (TOB, 2021).

Use integrated wastewater management and treatment strategy to reduce wastewater quantity and pollutant load

Wastewater management should be based on a holistic approach from wastewater generation to final disposal and includes functional elements such as composition, collection, treatment including sludge disposal and reuse. The selection of the appropriate treatment technology for industrial wastewater depends on integrated factors such as land availability, desired treated water quality and compliance with national and local regulations (Abbassi & Al Baz, 2008).

On-site reuse of treated wastewater not only improves the quality of water bodies, but also reduces the demand for freshwater. It is therefore very important to identify appropriate treatment strategies for different reuse objectives.

In integrated industrial wastewater treatment, different aspects such as wastewater collection system, treatment process and reuse target are evaluated together (Naghedi et al., 2020). For industrial wastewater recovery, methods such as SWOT method (strengths, weaknesses, opportunities and threats), PESTEL method (political, economic, social, technological, environmental and legal factors), decision tree can be combined with expert opinions to determine the integrated wastewater management framework (Naghedi et al., 2020). The integration of Analytic Hierarchy Process (AHP) and CoCoSo techniques can be used to determine priorities based on multiple criteria for industrial wastewater management processes (Adar et al., 2021).

The implementation of integrated wastewater management strategies can lead to an average reduction of up to 25% in water consumption, wastewater quantity and pollution loads of wastewater. The potential payback period of the implementation varies between 1-10 years (MoAF, 2021).

• Preparation of a water efficiency action plan to reduce water use and prevent water pollution Preparation of an action plan including short-, medium- and long-term actions to be taken in order to reduce the amount of water-wastewater in industrial facilities and prevent water pollution in terms of water efficiency is important. At this point, determination of water needs throughout the plant and in production processes, water quality requirements at the points of use, wastewater generation points and wastewater characterisation should be carried out (MoAF, 2021). At the same time, it is necessary to determine the measures to be implemented to reduce water consumption, wastewater generation and pollution loads, to make their feasibility and to prepare action plans for the short-medium-long term. In this way, water efficiency and sustainable water use are ensured in the facilities (TOB, 2021).

• Good production planning to optimise water consumption

In industrial production processes, planning by using the least process in the process from raw material to product is an effective practice for reducing labour costs, resource use costs and environmental impacts and ensuring efficiency (TUBITAK MAM, 2016; TOB, 2021). Production planning in industrial plants, taking into account the water efficiency factor, reduces water consumption and wastewater amount. Modification of production processes in industrial plants or combining some processes provides significant benefits in terms of water efficiency and time planning (TOB, 2021).

Determination of water efficiency targets

The first step in achieving water efficiency in industrial facilities is to set targets (TOB, 2021). For this, a detailed water efficiency analysis should be carried out on the basis of processes. In this way, unnecessary water use, water losses, wrong practices affecting water efficiency, process losses, reusable water-wastewater sources with or without treatment, etc. can be determined. It is also extremely important to determine the water saving potential and water efficiency targets for each production process and the plant as a whole (TOB, 2021).

2.1.3 General Water Efficiency BATs

Identification and minimisation of water losses

Water losses occur in equipment, pumps and pipelines in industrial production processes. Firstly, water losses should be identified and leakages should be prevented by regular maintenance of equipment, pumps and pipelines to keep them in good condition (IPPC BREF, 2003). Regular maintenance procedures should be established, paying particular attention to the following points:

- Adding pumps, valves, level switches, pressure and flow regulators to the maintenance checklist,
- Carrying out inspections not only in the water system, but also in particular in the heat transfer and chemical distribution systems, broken and leaking pipes, barrels, pumps and valves,
- Regular cleaning of filters and pipework,
- Calibrate, routinely check and monitor measuring equipment such as chemical measuring and dispensing devices, thermometers, etc. (IPPC BREF, 2003).

With effective maintenance-repair, cleaning and loss control practices, savings ranging from 1-6% in water consumption can be achieved (Öztürk, 2014).

Minimising spillages and leakages

Both raw material and water losses can occur due to spills and leaks in enterprises. In addition, if wet cleaning methods are used to clean the areas where spillage occurs, water consumption, wastewater amounts and pollution loads of wastewater may also increase (TOB, 2021). In order to reduce raw material and product losses, spill and splash losses are reduced by using splash guards, flaps, drip trays, sieves (IPPC BREF, 2019).

• Untreated reuse of relatively clean wastewater from washing, rinsing and equipment cleaning in production processes

In industrial plants, relatively clean wastewater such as washing-final rinse wastewater and filter backwash wastewater can be reused without treatment in floor washing and garden irrigation processes that do not require high water quality, saving between 1-5% in raw water consumption. The initial investment costs required for the application are the installation of new pipelines and reserve tanks (Öztürk, 2014).

• Use of pressure washing systems for equipment cleaning, general cleaning, etc.

Water nozzles are widely used in equipment plant cleaning. Effective results can be achieved by using correctly placed, appropriate nozzles to reduce water consumption and wastewater pollution loads. The use of active sensors and nozzles at points where highwater consumption occurs and where possible is very important in terms of efficient use of water. It is possible to achieve significant water savings by replacing mechanical equipment with pressurised nozzles (TUBITAK MAM, 2016). Reducing water consumption, wastewater generation and wastewater pollution load through the use of water pressure optimised nozzles in technically appropriate processes are the main environmental benefits of the application.

• Determination of the scope of reuse of washing and rinsing water

In industrial plants, relatively clean wastewaters such as washing-final rinse wastewaters and filter backwash wastewaters can be reused without treatment in floor washing and garden irrigation processes that do not require high water quality (Öztürk, 2014). Thus, it is possible to save between 1-5% in raw water consumption (TOB, 2021).

• Use of automatic control-close valves to optimise water use

Monitoring and controlling water consumption using flow control devices, meters and computer-aided monitoring systems provide significant technical, environmental and economic advantages (Öztürk, 2014). Monitoring the amount of water consumed in the plant and in various processes prevents water losses (TUBITAK MAM, 2016). It is necessary to use flow meters and counters in the plant in general and in production processes in particular, to use automatic shut-off valves and valves in continuously operating machines, and to develop monitoring-control mechanisms according to water consumption and some determined quality parameters by using computer-aided systems (TUBITAK MAM, 2016). With this application, it is possible to save up to 20-30% of water consumption on process basis (DEPA, 2002; LCPC, 2010; IPPC BREF, 2003). By monitoring and controlling water consumption on a process basis, 3-5% savings can be achieved in process water consumption (Öztürk, 2014).

• Determination of wastewater flows that can be reused with or without treatment by characterising the wastewater quantities and qualities at all wastewater generation points

It is possible to reuse various wastewater streams with or without treatment by determining and characterising the wastewater generation points in industrial facilities (Öztürk, 2014; TUBİTAK MAM, 2016; TOB, 2021). In this context, filter backwash waters, TO concentrates, blowdown waters, condensate waters, relatively clean washing and rinsing waters can be reused without treatment in the same/different processes and in areas that do not require high water quality (such as plant and equipment cleaning). In addition, wastewater streams that cannot be directly reused can be reused in production processes after treatment using appropriate treatment technologies.

Membrane filtration processes are an integral part of many wastewater reuse systems. Nanofiltration (NF) and reverse osmosis (RO) filtration systems are used for industrial wastewater recovery. Microfiltration (MF) and ultrafiltration (UF) are generally used for pretreatment of water before it goes to NF or TO (Singh et al., 2014).

Prevention of mixing of clean water flows with polluted water flows

By determining the wastewater generation points in industrial facilities and characterising the wastewater, wastewater with high pollution load and relatively clean wastewater can be collected in separate lines (TUBITAK MAM, 2016; TOB, 2021). In this way, wastewater streams with appropriate quality can be reused with or without treatment. With the separation of wastewater streams, water pollution is reduced, treatment performances are improved, energy consumption can be reduced in relation to the reduction of treatment needs, and emissions are reduced by providing wastewater recovery and recovery of valuable materials. In addition, heat recovery from separated hot wastewater streams is also possible (TUBITAK MAM, 2016; TOB, 2021). Separation of wastewater streams generally requires high investment costs, and where it is possible to recover large amounts of wastewater and energy, costs can be reduced (IPPC BREF, 2006).

Avoiding the use of drinking water in production lines

In different sub-sectors of the manufacturing industry, waters with different water quality can be used for production purposes. In industrial plants, raw water supplied from groundwater sources is generally used in production processes after treatment. However, in some cases, although it is costly in production processes, drinking water can be used directly or raw water is disinfected with chlorinated compounds and then used in production processes. These waters containing residual chlorine can react with organic compounds (natural organic substances (DOM)) in water in production processes and form disinfectant by-products harmful to living metabolisms (Özdemir & Toröz, 2010; Oğur et al.) The use of drinking water containing residual chlorine compounds or raw water disinfected with chlorinated compounds should be avoided as much as possible. Highly oxidising disinfection methods such as ultraviolet (UV), ultrasound (US) or ozone can be used instead of chlorine disinfection for disinfection of raw water. In order to increase the technical, economic and environmental benefits of the application, the determination and use of the water quality parameters required in each production process helps to reduce unnecessary water supply and treatment costs. With this application, it is possible to reduce water, energy and chemical costs (TUBITAK MAM, 2016).

• Storage, storage and post-use of substances (such as oils, emulsions, binders) that pose a risk to the aquatic environment should be prevented from mixing with wastewater as much as possible

In industrial plants, dry cleaning techniques can be used to prevent the mixing of chemicals that pose a risk to the aquatic environment such as oils, emulsions and binders into wastewater streams and leaks can be prevented. In this way, protection of water resources can be ensured (TUBITAK MAM, 2016).

 Construction of closed storage and impermeable waste/scrap sites to prevent the transport of toxic or hazardous chemicals for the aquatic environment

Closed and impermeable waste/scrap storage sites can be constructed in industrial facilities in order to prevent the transport of toxic or hazardous chemicals for the aquatic environment to receiving environments. This practice is already being implemented in our country within the scope of existing environmental regulations. Within the scope of the field studies carried out, a separate collection channel can be constructed in the storage areas of toxic or hazardous substances in industrial facilities and the leachate can be collected separately and prevented from mixing into natural water environments.

• Use of automatic hardware and equipment (sensors, smart hand washing systems, etc.) that will save water at water usage points such as showers/toilets etc.

Water is very important in many sectors of the manufacturing industry, both for production processes and for personnel to meet the necessary hygiene standards. Water consumption in the production processes of industrial facilities can be provided in various ways, as well as water consumption savings can be achieved by using equipment such as sensor faucets and smart hand washing systems in the water usage areas of the personnel. Smart hand washing systems provide resource efficiency in addition to water saving while adjusting the mixture of water, soap and air at the right rate.

• Reuse of pressurised filtration backwash water prior to water softening at appropriate points

Softened water with low calcium and magnesium concentrations is required for many industrial processes. With water softening systems, calcium, magnesium and some other metal cations in hard water are removed from the water and soft water is obtained.

Savings are achieved by reusing pressurised filtration backwash water at appropriate points before water softening. This measure is similar in content with practices such as "Reuse of filter backwash water in filtration processes, reuse of relatively clean water in production processes, reduction of water consumption by using on-site cleaning systems".

• Optimising the frequency and duration of regeneration (including rinses) in water softening systems

Cationic ion exchange resins, which are one of the most frequently used methods for softening raw water in industrial plants, are routinely regenerated. In regeneration, prewashing of the resin using raw water, regeneration with salt water and final rinsing processes are carried out respectively. Regeneration periods are determined depending on the hardness of the water. If the hardness is high, regeneration should be performed more frequently in water softening systems.

In regeneration processes, washing, regeneration and rinsing wastewaters are generally removed directly. However, if the washing and final rinsing waters are of raw water quality, they can be sent to raw water storage or reused in processes that do not require high water quality such as facility cleaning and green area irrigation (TOB, 2021).

It is very important to determine the optimum regeneration frequency in regeneration systems. Although regeneration in water softening systems is adjusted according to the frequencies recommended by the supplier or depending on the flow rate and time entering the softening system, this frequency also varies depending on the calcium concentration in the raw water. For this reason, online hardness measurement is applied while determining the regeneration frequency. Thus, regeneration frequencies can be optimised and excessive washing rinsing or backwashing with salt water can be prevented by using online hardness sensors.

• Separate collection and treatment of grey water in the facility and its use in areas that do not require high water quality (green area irrigation, floor washing, etc.)

Wastewater generated in industrial facilities is not only industrial wastewater from production processes, but also includes wastewater from showers, sinks, kitchens, etc. Wastewater from shower, sink, kitchen etc. areas is called grey water. Water savings can be achieved by treating these grey waters with various treatment processes and using them in areas that do not require high water quality.

• Preventing the need for rinsing between activities by using compatible chemicals in sequential processes

Chemical compatibility is a measure of how stable a substance is when mixed with another substance. If two substances mix together and undergo a chemical reaction, they are considered incompatible.

Various chemicals are used in industrial plants to increase washing and rinsing efficiency. The fact that these chemicals are compatible and act as solvents shows a positive trend in increasing the efficiency. Therefore, the dirt on the material can be removed in a shorter time and more effectively and the amount of water used in washing processes can be significantly reduced. In this case, even if the amount of wastewater can be reduced, there may be an increase in the chemical loads carried by wastewater. These negative effects can be minimised by reusing the washing water containing solvents used in washing rinsing processes.

Water savings of 25-50% are possible by reusing wash water. The application may require reserve tanks and new pipelines. In alternative cases, the washing solution can be kept directly in the system and used repeatedly until it loses its properties.

• Collecting rainwater and utilising it as an alternative water source in facility cleaning or in suitable areas

Nowadays, when water resources are decreasing, rainwater harvesting is frequently preferred especially in regions with low rainfall. There are different technologies and systems for rainwater collection and distribution systems. Cistern systems, ground infiltration, surface collection and filter systems are used. Rainwater collected with special drainage systems can be used for production processes, garden irrigation, tank and equipment cleaning, surface cleaning, etc. if it meets the required quality requirements (Tanık et al., 2015).

In various examples, roof rainwater collected in industrial facilities was stored and used inside the building and in landscape areas, resulting in 50% water saving in landscape irrigation (Yaman, 2009). Perforated stones and green areas can be preferred in order to increase the permeability of the ground and to allow rainwater to pass and absorb into the soil on the site (Yaman, 2009). Rainwater collected on building roofs can be used for car washing and garden irrigation. It is possible to recover and reuse 95% of the collected water by biological treatment after use (Şahin, 2010).

 Reducing water consumption by reusing filter wash water in filtration processes, reusing relatively clean cleaning water in production processes and using clean-in-place systems (CIP)

The wastewater from backwashing of activated carbon filters and softeners usually contains only a high proportion of suspended solids (TSS). Backwash water, which is one of the easiest types of wastewater to recover, can be recovered by filtration with ultrafiltration plants. In this way, water savings of up to 15% can be achieved (URL - 1, 2021).

Regeneration wastewater generated after the regeneration process are soft waters with high salt content and constitute approximately 5-10% of total water consumption. Regeneration wastewater is collected in a separate tank and utilised in processes with high salt requirements, plant cleaning and domestic use. For this purpose, a reserve tank, water installation and pump are required. By reusing regeneration wastewater, water consumption, energy consumption, wastewater amounts and salt content of wastewater are reduced by approximately 5-10% (Öztürk, 2014). The payback period varies depending on whether the regeneration wastewater is consumed in production processes, plant cleaning and domestic use. The potential payback period is estimated to be less than one year if regeneration waters are reused in production processes that require high salt (since both water and salt will be recovered). For facility and equipment cleaning and domestic uses, the payback period is estimated to be over one year (MoAF, 2021).

In our country, reverse osmosis (RO) concentrates are combined with other wastewater streams and discharged to the wastewater treatment plant channel. The concentrates formed in TO systems used for additional hardness removal can be used in garden irrigation, in-plant and tank-equipment cleaning (TUBİTAK MAM, 2016; TOB, 2021). In addition, with the structuring of monitoring for raw water quality, it is possible to feed TO concentrates back to raw water reservoirs and re-evaluate them by mixing (TOB, 2021).

Reverse Osmosis System

Documented production procedures are kept and used by employees to prevent water and energy wastage

In order to ensure efficient production in an enterprise, effective procedures should be implemented to identify and evaluate potential problems and resources and to control production stages (Ayan, 2010). Determining and implementing appropriate procedures in production processes ensures more efficient use of resources (such as raw materials, water, energy, chemicals, personnel and time) and ensures reliability and quality in production processes (Ayan, 2010). The existence of documented production procedures in production processes contributes to the evaluation of business performance and the development of the ability to develop immediate reflexes to solve problems (TUBITAK MAM, 2016; TOB, 2021). Effective implementation and monitoring of the procedures created specifically for production processes is one of the most effective ways to ensure product quality, receive feedback and develop solutions (Ayan, 2010). Documentation, effective implementation and monitoring of production procedures is a good management practice and an effective tool in structuring and ensuring the continuity of the cleaner production approach and environmental management system. In addition to the potential benefits, the cost and economic gains of the application may vary from sector to sector or depending on the facility structure (TUBITAK MAM, 2016; TOB, 2021). Although establishing and monitoring production procedures is not costly, the payback period may be short considering the savings and benefits it will provide (TUBITAK MAM, 2016; TOB, 2021).

• Implementation of time optimisation in production and arrangement of all processes to be completed as soon as possible

In industrial production processes, planning the process from raw material to product by using the minimum number of processes is an effective practice for reducing labour costs, resource use costs and environmental impacts and ensuring efficiency. In this context, it may be necessary to revise the production processes so that the minimum number of process steps is used (TUBITAK MAM, 2016). In cases where the desired product quality cannot be achieved due to some inefficiencies, inefficiency and design errors in basic production processes, production processes may need to be renewed. Therefore, in this case, the resource utilisation and the amount of waste, emission and solid waste generated in the production of unit amount of product increases. Time optimisation in production processes is an effective application (TUBITAK MAM, 2016).

• Recovery of water from rinsing solutions and reuse of recovered water in processes appropriate to its quality

Rinsing wastewaters in industrial plants are relatively clean wastewaters that can be reused without treatment in floor washing and garden irrigation processes that do not require high water quality (Öztürk, 2014). Recycling of rinsing wastewater reduces raw water consumption. Savings between 1-5% can be achieved.

• Reuse of nanofiltration (NF) or reverse osmosis (RO) concentrates with or without treatment depending on their characterisation

Depending on the wastewater characterisation and the appropriate point of use, the reuse potential of other wastewater from membrane processes (backwashing without or with chemicals, CIP cleaning, module cleaning, cleaning of chemical tanks, etc.) should be assessed.

Nanofiltration is a membrane-based liquid separation technique with low energy consumption and low operating pressures suitable for the treatment of well water and surface water. Reverse osmosis is also a membrane-based liquid separation technique and can separate smaller substances than nanofiltration (Akgül, 2016).

Savings are achieved by reusing nanofiltration or reverse osmosis concentrates with or without treatment depending on their characterisation. Measures should be taken to reduce water consumption by reusing clean water in the production processes of filter backwash water in filtration processes and using cleaning systems (TOB, 2021).

• Use of computer aided control systems in production processes

Since inefficient resource utilisation and environmental problems in industrial facilities are directly related to input-output flows, it is necessary to define the process inputs and outputs in the best way for production processes (TUBITAK MAM, 2016). Thus, it becomes possible to develop measures to improve resource efficiency, economic and environmental performance. The organisation of input-output inventories is considered as a prerequisite for continuous improvement. While such management practices require the participation of technical staff and senior management, they pay for themselves in a short time with the work of various experts (IPPC BREF, 2003). It is necessary to use measurement equipment on the basis of application processes and to carry out some routine analyses/measurements specific to the processes. Utilising computerised monitoring systems as much as possible in order to maximise the efficiency of the application increases the technical, economic and environmental benefits (TUBITAK MAM, 2016).

Computer Aided Control System

https://sayachizmet.com/wp-content/uploads/2020/01/SCADA-nedir-1280x720-1.jpg.webp

2.1.4Precautions for Auxiliary Processes

BATs for cooling systems

- Use of a closed-loop cooling system to minimise water use
 - Closed loop cooling systems significantly reduce water consumption compared to open loop systems with more intensive water use. In closed loop systems, while the same water is recirculated within the system, it is usually necessary to add cooling water equal to the amount of water evaporated. By optimising cooling systems, evaporation losses can also be reduced.
- Avoid unnecessary cooling processes by identifying the processes that need wet cooling The boundaries of the plant site affect design parameters such as cooling tower height. In cases where it is necessary to reduce the tower height, hybrid cooling system can be applied. Hybrid cooling systems with and without evaporation (wet and dry) is a combination of cooling systems. Depending on the ambient temperature, the hybrid cooling tower can be operated as a fully wet cooling tower or as a combined wet/dry cooling tower (TUBITAK MAM, 2016). In regions where there is not enough cooling water or where water costs are high, the evaluation of dry cooling systems or hybrid cooling systems can be an effective solution to reduce the amount of cooling booster water (TUBITAK MAM, 2016).

Bibliography

- Abbassi, B., & Al Baz, I. (2008). Integrated Wastewater Management: A Review. https://doi. org/10.1007/978-3-540-74492-4 3.
- Adar, E., Delice, E., & Adar, T. (2021). Prioritising of industrial wastewater management processes using an integrated AHP-CoCoSo model: comparative and sensitivity analyses. International Journal of Environmental Science and Technology, 1-22.
- Akgül, D. (2016). Cost Analysis of Drinking and Potable Water Production with Reverse Osmosis and Nanofiltration Systems in Turkey. Istanbul Technical University Institute of Science and Technology.
- Ayan, B. (2010). International Certification Systems in Welded Manufacturing Enterprises. Izmir: Dokuz Eylül University, Institute of Social Sciences, Department of Business Administration, Master's Thesis.
- Christopher, S. (1998). ISO 14001 and Beyond Environmental Management Systems in the Real World.
- MoEU. (2020e). Cleaner Production Practices in Certain Sectors Project. Republic of Turkey Ministry of Environment, Urbanisation and Climate Change General Directorate of Environmental Management.
- Delmas, M. (2009). Erratum to "Stakeholders and Competitive Advantage: The Case of ISO 14001. doi:10.1111/j.1937-5956.2004.tb00226.x.
- DEPA. (2002). Danish Environmental Protection Agency (DEPA). Danish Experience, Best Avaible Techniques-Bat in the Clothing and Textile Industry.
- Hutchens Jr., S. (2017). Using ISO 9001 or ISO 14001 to Gain a Competitive Advantage.
- IPPC BREF. (2003). Reference Document on Best Available Techniques for the Textiles Industry. Retrieved from https://eippcb.jrc.ec.europa.eu/reference
- IPPC BREF. (2006). European Commission (EC) Integrated Pollution Prevention and Control Reference Document on Best Available Techniques for the Surface Treatment of Metals and Plastics.
- IPPC BREF. (2019). Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. https://eippcb.jrc.ec.europa.eu/reference.
- ISO 14001 User Manual. (2015). Generic ISO 14001 EMS Templates User Manual.
- LCPC. (2010). Lebanese Cleaner Production Centre . Cleaner Production Guide for Textile Industries.
- Naghedi, R., Moghaddam, M., & Piadeh, F. (2020). Creating functional group alternatives in integrated industrial wastewater recycling system: A case study of Toos Industrial Park (Iran). Journal of Cleaner Production. doi:https://doi.org/10.1016/j.jclepro.2020.120464.
- Oğur, R., Tekbaş, Ö. F., & Hasde, M. (2004). Chlorination Guide: Chlorination of Drinking and Potable Water. Ankara: Gülhane Military Medical Academy, Department of Public Health.
- Özdemir, K., & Toröz, İ. (2010). Monitoring of Chlorination By-Products in Drinking Water Sources by Differential UV Spectroscopy Method. ITU Journal.
- Öztürk, E. (2014). Integrated Pollution Prevention and Control and Cleaner Production Practices in Textile Sector. Isparta.
- Potoski, M., & Prakash, A. (2005). Green Clubs and Voluntary Governance: ISO 14001 and Firms' Regulatory Compliance. American Journal of Political Science, 235-248.
- Singh, M., Liang, L., Basu, A., Belsan, M., Hallsby, G., & Morris, W. (2014). 3D TRASAR™ Technologies for Reliable Wastewater Recycling and Reuse. doi:10.1016/B978-0-08-099968-5.00011-8.
- Sahin, N. I. (2010). Water Conservation in Buildings. Istanbul Technical University, Institute of Science and Technology, Master Thesis.
- Tanık, A., Öztürk, İ., & Cüceloğlu, G. (2015). Reuse of Treated Wastewater and Rainwater Harvesting Systems (Handbook). Ankara: Union of Municipalities of Turkey.
- TOB. (2021). Technical Assistance Project for Economic Analyses and Water Efficiency Studies within the Scope of River Basin Management Plans in 3 Pilot Basins. Republic of Turkey Ministry of Agriculture and Forestry.
- TUBİTAK MAM. (2016). Determination of Cleaner Production Opportunities and Applicability in Industry (SANVER) Project, Final Report. Scientific and Technological Research Council of Turkey Marmara Research Centre.
- URL 1. (2021). Recovery of Filter Backwash Water. Retrieved from https://rielli.com/portfolio/filtre-ters-yikama-sularinin-geri-kazanimi/
- Yaman, C. (2009). Siemens Gebze Facilities Green Building. IX. National Installation Engineering Congress.

Reşitpaşa Mah Katar Cd. Arı Teknokent 1 2/5, D:12, 34469 Sarıyer/Istanbul

(0212) 276 65 48

www.iocevre.com