## T.R. MINISTRY OF AGRICULTURE AND FORESTRY GENERAL DIRECTORATE OF WATER MANAGEMENT **Water Efficiency** **Guide Documents Series** DISTILLATION, PURIFICATION AND BLENDING OF ALCOHOLIC BEVERAGES **NACE CODE: 11.01** **ANKARA 2023** Ministry of Agriculture and Forestry, General Directorate of Water Management Contractor io Environmental Solutions R&D Ltd. Sti. has been prepared. All rights reserved. This document and its content cannot be used or reproduced without the permission of the General Directorate of Water Management. ## Table of contents | | Abbreviations | 4 | |-------|-----------------------------------------------------------------|----| | 1 | Entrance | 5 | | 2 | Study Scope | 8 | | 2.1 | Distillation, Clarification and Blending of Alcoholic Beverages | 10 | | 2.1.1 | Good Management Practices | 14 | | 2.1.2 | General Precautionary Measures | 16 | | 2.1.3 | Precautions for Ancillary Processes | 22 | | | Bibliography | 24 | ## **Abbreviations** | EU European Union MLSS Mixed Liquor Suspended Solids BREF Best Available Techniques Reference Document EMS Environmental Management System MoEUCC Republic of Türkiye Ministry of Environment, Urbanization and Climate Change NOM Natural Organic Matter EMAS Eco Management and Audit Program Directive EPA United States Environmental Protection Agency IPPC Industrial Pollution Prevention and Control ISO International Organization for Standardization BAT Best Available Techniques NACE Statistical Classification of Economic Activities | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | BREF Best Available Techniques Reference Document EMS Environmental Management System MoEUCC Republic of Türkiye Ministry of Environment, Urbanization and Climate Change NOM Natural Organic Matter EMAS Eco Management and Audit Program Directive EPA United States Environmental Protection Agency IPPC Industrial Pollution Prevention and Control ISO International Organization for Standardization BAT Best Available Techniques | | EMS Environmental Management System MoEUCC Republic of Türkiye Ministry of Environment, Urbanization and Climate Change NOM Natural Organic Matter EMAS Eco Management and Audit Program Directive EPA United States Environmental Protection Agency IPPC Industrial Pollution Prevention and Control ISO International Organization for Standardization BAT Best Available Techniques | | MoEUCC Republic of Türkiye Ministry of Environment, Urbanization and Climate Change NOM Natural Organic Matter EMAS Eco Management and Audit Program Directive EPA United States Environmental Protection Agency IPPC Industrial Pollution Prevention and Control ISO International Organization for Standardization BAT Best Available Techniques | | Change NOM Natural Organic Matter EMAS Eco Management and Audit Program Directive EPA United States Environmental Protection Agency IPPC Industrial Pollution Prevention and Control ISO International Organization for Standardization BAT Best Available Techniques | | EMAS Eco Management and Audit Program Directive EPA United States Environmental Protection Agency IPPC Industrial Pollution Prevention and Control ISO International Organization for Standardization BAT Best Available Techniques | | EPA United States Environmental Protection Agency IPPC Industrial Pollution Prevention and Control ISO International Organization for Standardization BAT Best Available Techniques | | IPPC Industrial Pollution Prevention and Control ISO International Organization for Standardization BAT Best Available Techniques | | ISO International Organization for Standardization BAT Best Available Techniques | | BAT Best Available Techniques | | · · · · · · · · · · · · · · · · · · · | | NACE Statistical Classification of Economic Activities | | | | GDWM General Directorate of Water Management | | RO Reverse Osmosis | | MoAF Ministry of Agriculture and Forestry of the Republic of Türkiye | | TurkStat Turkish Statistical Institute | | NF Nanofiltration | | MF Microfiltration | | UF Ultrafiltration | | GW Groundwater | | SW Surface Water | ## 1 Introduction Our country is located in the Mediterranean basin, where the effects of global climate change are felt intensely, and is considered among the regions that will be most affected by the negative effects of climate change. Projections on how our water resources in our basins will be affected in the future due to climate change show that our water resources may decrease by up to 25 percent in the next hundred years. For 2022, the annual amount of usable water per capita in our country is 1,313 m³, and it is expected that the annual amount of usable water per capita will fall below 1,000 cubic meters after 2030 due to human pressures and the effects of climate change. It is obvious that if the necessary measures are not taken, Türkiye will become a country suffering from water scarcity in the very near future and will bring many negative social and economic consequences. As can be understood from the results of future projections, the risk of drought and water scarcity awaiting our country necessitates the efficient and sustainable use of our existing water resources. The concept of water efficiency can be defined as "the use of the least amount of water in the production of a product or service". Water efficiency approach; It is based on the rational, sharing, equitable, efficient and effective use of water in all sectors, especially drinking water, agriculture, industry and household uses, taking into account the needs of not only people but also ecosystem sensitivity and all living things by protecting it in terms of quantity and quality. With the increasing demand for water resources, the change in precipitation and temperature regimes as a result of climate change, the increase in population, urbanization and pollution, it is becoming more and more important to share the usable water resources among the users in a fair and balanced way. For this reason, it has become a necessity to create a roadmap based on efficiency and optimization in order to protect and use limited water resources with sustainable management practices. In the sustainable development vision determined by the United Nations, Goal 7 from the Millennium Development Goals: Ensuring Environmental Sustainability and Goal 9 from the Sustainable Development Goals: Industry, Innovation and Infrastructure and Goal 12: Responsible Production and Consumption goals Issues such as efficient, fair and sustainable use of resources, especially water, environmentally friendly production and consumption that is the concern of future generations are included. In the European Green Deal Action Plan prepared by our country within the scope of the European Green Deal, where member countries agree on goals such as implementing a clean, circular economy model with the goal of carbon neutrality, expanding the efficient use of resources and reducing environmental impacts, actions emphasizing water and resource efficiency in various fields, especially in industry, production and consumption have been determined. The "Industrial Emissions Directive (EED)", which is one of the most important components of the European Union environmental legislation in terms of industry, includes the measures to be taken to control, prevent or reduce the discharges/emissions from industrial activities to the receiving environment, including air, water and soil, with an integrated approach. In the Directive, Best Available Techniques (BAT/ MET) are presented in order to systematize the applicability of cleaner production processes and to eliminate the difficulties experienced in practice. Considering the costs and benefits, METs are the most effective implementation techniques for a high level of environmental protection. In accordance with the Directive, Reference Documents (BAT-BREF) have been prepared for each sector, in which the METs are explained in detail. In BREF documents, METs are presented in a general framework such as good management practices, general precautionary techniques, chemical use and management, techniques for various production processes, wastewater management, emission management and waste management. The Ministry of Agriculture and Forestry, General Directorate of Water Management carries out studies aimed at disseminating efficient practices in urban, agricultural, industrial and individual water use and increasing social awareness. "Water Efficiency Strategy Document and Action Plan within the Framework of Adaptation to the Changing Climate (2023-2033)" entered into force with the Presidential Circular No. 2023/9 Water efficiency action plans addressing all sectors and stakeholders have been prepared. In the Industrial Water Efficiency Action Plan, a total of 12 actions have been determined for the period 2023-2033 and responsible and relevant institutions have been appointed for these actions. Within the scope of the said Action Plan; Carrying out studies to determine specific water usage ranges and quality requirements on the basis of sub-sectors in the industry, organizing technical training programs and workshops on a sectoral basis, and preparing water efficiency guidance documents are defined as the responsibility of the General Directorate of Water Management. On the other hand, with the "Industrial Water Use Efficiency Project According to NACE Codes" carried out by the Ministry of Agriculture and Forestry, General Directorate of Water Management, the best sectoral techniques specific to our country have been determined within the scope of studies to improve water efficiency in the industry. As a result of the study, sectoral guidance documents and action plans classified with NACE codes, which include the measures recommended to improve water use efficiency in sectors with high water consumption operating in our country, have been prepared. As in the world, the sectors with the highest share in water consumption in our country are food, textile, chemistry and basic metal sectors. Within the scope of the studies, field visits were carried out in enterprises representing 152 sub-sectors in 35 main sectors, especially food, textile, chemistry, basic metal industry, which will represent production areas of different capacities and diversity within the scope of NACE Codes, which operate in our country and have high water consumption, and provide data on water supply, sectoral water use, wastewater generation and recycling. and the best available techniques (MET) and sectoral reference documents (BREF) published by the European Union, water efficiency, cleaner production, water footprint, etc. Distribution of water use in industry on a sectoral basis in our country As a result of the studies, specific water consumption and potential savings rates for the processes of the enterprises were determined for 152 different 4-digit NACE codes with high water consumption, and water efficiency guidance documents were prepared by taking into account the EU best available techniques (MET) and other cleaner production techniques. The guidelines include 500 techniques for water efficiency (MET); It has been examined under 4 main groups: (i) Good Management Practices, (ii) General Measures, (iii) Measures Related to Auxiliary Processes and (iv) Sector-Specific Measures. Within the scope of the project, environmental benefits, operational data, technical specifications-requirements and applicability criteria were taken into account during the determination of METs for each sector. In the determination of METs, BREF documents were not limited to the METs, but also different data sources such as current literature data, real case studies, innovative practices, and reports of sector representatives on a global scale were examined in detail and sectoral MET lists were created. In order to evaluate the suitability of the MET lists created for the local industrial infrastructure and capacity of our country, the MET lists prepared specifically for each NACE code were prioritized by the enterprises by scoring them on the criteria of water saving, economic saving, environmental benefit, applicability, cross-media impact, and the final MET lists were determined using the scoring results. Sectoral water efficiency guidelines have been created on the basis of the NACE code based on the water and wastewater data of the facilities visited within the scope of the project and the final MET lists highlighted by the sectoral stakeholders and determined by taking into account the local dynamics specific to our country. ## 2 Scope of the Study The guidance documents prepared within the scope of water efficiency measures in the industry include the following main sectors : - Crop and animal production, hunting and related service activities (including sub-production areas represented by 6 four-digit NACE Codes ) - Fisheries and aquaculture (including 1 sub-production area represented by a four-digit NACE Code ) - Extraction of coal and lignite (including 2 sub-production areas represented by a four-digit NACE Code) - Service activities in support of mining (including 1 sub-production area represented by a four-digit NACE Code ) - Metal ore mining (including 2 sub-production areas represented by a four-digit NACE Code) - Other mining and quarrying (including 2 sub-production areas represented by a four-digit NACE Code) - Manufacture of food products (including 22 sub-production areas represented by a four-digit NACE Code) - Manufacture of beverages (including 4 sub-production areas represented by a four-digit NACE Code) - Manufacture of tobacco products (including 1 sub-production area represented by a four-digit NACE Code) - Manufacture of textiles (including 9 sub-production areas represented by a four-digit NACE Code) - Manufacture of apparel (including 1 sub-production area represented by a four-digit NACE Code) - Manufacture of leather and related products (including 3 sub-production areas represented by a four-digit NACE Code) - Manufacture of wood, wood products and cork products (except furniture); manufacture of articles made by knitting from reeds, straw and similar materials (including 5 sub-production areas represented by a four-digit NACE Code) - Manufacture of paper and paper products (including 3 sub-production areas represented by a four-digit NACE Code) - Manufacture of coke and refined petroleum products (including 1 sub-production area represented by a four-digit NACE Code) - Manufacture of chemicals and chemical products (including 13 sub-production areas represented by a four-digit NACE Code ) - Manufacture of basic pharmaceutical products and pharmaceutical materials (including 1 sub-production area represented by a four-digit NACE Code ) - Manufacture of rubber and plastic products (including 6 sub-production areas represented by a four-digit NACE Code ) - Manufacture of other non-metallic mineral products (including 12 sub-production areas represented by a fourdigit NACE Code ) - Base metal industry (including 11 sub-production areas represented by a four-digit NACE Code) - Manufacture of fabricated metal products (excluding machinery and equipment) (including 12 sub-production areas represented by a four-digit NACE Code ) - Manufacture of computers, electronic and optical products (including sub-production area represented by 2 four-digit NACE Codes ) - Manufacture of electrical equipment (including 7 sub-production areas represented by a four-digit NACE Code) - Manufacture of machinery and equipment, n.e.c. (including 8 sub-production areas represented by a four-digit NACE Code ) - Manufacture of motor vehicles, trailers and semi-trailers (including 3 sub-production areas represented by a four-digit NACE Code) - Manufacture of other means of transport (including 2 sub-production areas represented by a four-digit NACE Code) - Other productions (including 2 sub-production areas represented by a four-digit NACE Code) - Installation and repair of machinery and equipment (including 2 sub-production areas represented by a four-digit NACE Code ) - Electricity, gas, steam and ventilation system production and distribution (including 2 sub-production areas represented by a four-digit NACE Code) - Waste collection, remediation and disposal activities; recovery of materials (including 1 sub-production area represented by a four-digit NACE Code) - Construction of non-building structures (including 1 sub-production area represented by a four-digit NACE Code) - Storage and supporting activities for transportation (including 1 sub-production area represented by a four-digit NACE Code ) - Accommodation (including 1 sub-production area represented by a four-digit NACE Code) - Educational Activities (Higher Education Campuses) (including 1 sub-production area represented by a four-digit NACE Code) - Sports, entertainment and recreational activities (including 1 sub-production area represented by a four-digit NACE Code ) #### Manufacture of beverages Under the beverage manufacturing sector, the sub-production branches for which guide documents have been prepared are as follows: - 11.01 Distillation, purification and blending of alcoholic beverages - 11.02 Manufacture of wine from grapes - 11.05 Brewing - 11.07 Manufacture of soft drinks; Production of mineral waters and other bottled waters # 2.1 Distillation, Clarification and Blending of Alcoholic Beverages (NACE 11.01) Water Flow Chart for the Distillation, Purification and Blending of Alcoholic Beverages Industry | | Minimum | Maximum | |------------------------------------------------------------------------------------------------|---------|---------| | Specific Water Consumption of Facilities Visited within the Scope of the Project (L/L product) | 5 | 9.9 | | Reference Specific Water Consumption (L/L product) | 5 | 0 | #### Percentage Distribution of Water Efficiency Practices In the preparation phase for production, after the grapes are separated from the stems, they are pressed to obtain maish. Maiches are fermented with yeast in fermentation tanks. Fermented maishe is distilled in distillation columns to obtain "suma". At this stage, products called technical alcohol, fusel oil and vinas are formed. After the solids are separated from the vinas, the water in it is removed by evaporation and concentrated vinas is obtained. The main substance used in the production of ethyl alcohol within the scope of the relevant sector is molasses. Molasses, which is supplied to the facility as raw material, is fermented with the addition of yeast in fermentation tanks and it is ensured that it contains alcohol. Then, as a result of the distillation of the fermented product, by-products such as ethyl alcohol, chylempe, fusel oil and ester are formed. As a result of distillation, extra neutral alcohol (ENA) containing 96% alcohol is obtained and stored ready for use in production. If needed, ethyl alcohol can be produced from wheat instead of molasses as an alternative raw material. A spirited beverage is produced by adding various flavors and water to the extra neutral alcohol (ENA) obtained, and by additional processes such as retorting. In the distillation of alcoholic beverages sector, water is consumed in CIP (cleaning-inplace) systems used in the production of food and in the washing of distillation columns. In addition, in the production of spirits, water is added directly to the product. Demineralized water is needed for these uses. In raw water preparation units such as activated carbon filters, ion exchange resins, reverse osmosis, which are used to produce demineralized water, significant water consumption is also realized for filter washing, resin regeneration and membrane cleaning processes. In addition, water consumption occurs in auxiliary units such as cooling towers and steam boilers. In the distillation, purification and blending of alcoholic beverages sector, the reference specific water consumption is 50 L/L. The specific water consumption of the production branch analyzed within the scope of the study is 59.9 L/L. It is possible to achieve 25-38% water recovery in the sector with the implementation of good management practices, general measures and measures related to auxiliary processes. Ethyl Alcohol Production Distillation Columns https://l24.im/ZArs1 11.01 Distillation, Clarification and Blending of Alcoholic Beverages The priority water efficiency implementation techniques recommended under the NACE code are presented in the table below. | NACE<br>Code | NACE<br>Code<br>Description | | Industry-First Available Best Techniques | |--------------|----------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 01 | Se | | Good Management Practices | | 11.01 | 'ag6 | 1. | Establishment of an environmental management system | | | bever | 2. | Providing technical training to personnel for the reduction and optimization of water use | | | olic | | General Precautionary Measures | | | <u> </u> | 1. | Minimization of spills and leaks | | | d blending of al | 2. | It will save water at water usage points such as showers/toilets, etc. Use of automated hardware and equipment (sensors, smart handwashing systems, etc.) | | | | 3.<br>4. | Use of pressure washers for equipment cleaning, general cleaning, etc. Detection and reduction of water losses | | | an | 5. | Use of automatic check-off valves to optimise water use | | | Distillation, purification and blending of alcoholic beverages | 6. | Documentation of production procedures and use by employees to prevent waste of water and energy | | | | 7. | Optimising the frequency and duration of regeneration (including rinses) in water softening systems | | | | 8. | Transport of toxic or hazardous chemicals for the aquatic environment Construction of closed storage and impermeable waste/scrap | | | | 9. | yard to prevent Wastewater quantities and qualities at all wastewater formation points Characterization and determination of wastewater streams that can be reused with or without treatment | | | | 10 | Use of closed-loop water cycles in appropriate processes | | | | | Use of computer-aided control systems in production | | | | | processes | | | | 12. | Determination of the scope of reuse of washing and rinsing waters | | | | | Separate collection and treatment of grey water in the plant and high water quality | | | | 13. | To be used in areas that do not require (green area irrigation, floor, floor washing, etc.) | | | | 14. | Implementation of time optimization in production and arrangement of all processes to be completed as soon as possible | | | | 15. | Collecting rainwater and evaluating it as an alternative water source in facility cleaning or in appropriate areas | | | | | Nanofiltration (NF) or reverse osmosis (RO) concentrates | | | | 16. | repetition with or without purification, depending on the characterization use | | NACE<br>Code | NACE<br>Code<br>Description | | Industry-First Available Best Techniques | |--------------|------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------| | 01 | | | Precautions for Ancillary Processes | | 11.01 | Distillation, purification and blending of alcoholic | 1. | Reuse of the liquid formed by condensation from the ventilation system | | | | 2. | Avoiding unnecessary cooling processes by identifying processes that need wet cooling | | | | 3. | Increasing the number of cycles by using anti-corrosion and anti-scale inhibitors in systems with a closed water loop | | | | 4. | Installation of water softening systems for the healthy operation of cooling water recovery systems | A total of 22 techniques have been proposed in this sector. Distillation, Clarification and Blending of Alcoholic Beverages Towards NACE Code; - (i) Good Management Practices - (ii) General Precautions and - (iii) Measures related to auxiliary processes are given under separate headings. ## 2.1.1 Good Management Practices #### • Establishment of an environmental management system Environmental Management Systems (EMS) include the organizational structure, responsibilities, procedures and resources required to develop, implement and monitor the environmental policies of industrial organizations. The establishment of the environmental management system improves the decision-making processes of institutions between raw materials, water-wastewater infrastructure, planned production process, and different treatment techniques. Environmental management organizes how to manage resource procurement and waste discharge demands with the highest economic efficiency, without compromising product quality and with the least possible impact on the environment. The most widely used Environmental Management Standard is ISO 14001. Alternatives include the Eco Management and Audit Programme Directive (EMAS) (761/2001). It has been developed for the evaluation, improvement and reporting of the environmental performance of enterprises. It is one of the leading practices within the scope of eco-efficiency (cleaner production) in EU legislation and participation is provided voluntarily (TUBITAK MAM, 2016; MoAF, 2021). The benefits of establishing and implementing an Environmental Management System are as follows: - Economic benefits can be achieved by improving business performance (Christopher, 1998). - International Organization for Standardization (ISO) standards are adopted, resulting in greater compliance with global legal and regulatory requirements (Christopher, 1998). - While the penalty risks related to environmental responsibilities are minimized, the amount of waste, resource consumption and operating costs are reduced (Delmas, 2009). - The use of internationally accepted environmental standards eliminates the need for multiple registrations and certifications for businesses operating in different locations around the world (Hutchens Jr., 2017). - Especially in recent years, the improvement of the internal control processes of companies is also important to consumers. The implementation of environmental management systems provides a competitive advantage over companies that do not adopt the standard. It also contributes to the better position of institutions in international areas/markets (Potoski & Prakash, 2005). The benefits listed above depend on numerous factors such as the production process, management practices, resource use, and potential environmental impacts (MoAF, 2021). Savings of 3-5% in water consumption can be achieved with applications such as the preparation of annual inventory reports with similar content to the environmental management system and monitoring of inputs and outputs in production processes in terms of quantity and quality (Öztürk, 2014). The total duration of the EMS development and implementation phases is estimated to be 8-12 months (ISO 14001 User Manual, 2015). Industrial organizations also carry out studies within the scope of the ISO 14046 Water Footprint Standard, which is an international standard that defines the requirements and guidelines for assessing and reporting their water footprint. With the implementation of the relevant standard, it is aimed to reduce the use of fresh water and environmental impacts required for production. In addition, the ISO 46001 Water Efficiency Management Systems Standard, which helps industrial organizations to save water and reduce operating costs, helps organizations to improve their water efficiency policies by monitoring, benchmarking and reviewing. #### • Providing technical training to personnel for the reduction and optimization of water use With this measure, water saving and water recovery can be achieved by increasing the training and awareness of the personnel, and water efficiency can be achieved by reducing water consumption and costs. Due to the fact that the personnel do not have the necessary technical knowledge in industrial facilities, problems may arise with the use of high amounts of water and wastewater formation. For example, it is important that cooling tower operators, who represent a significant proportion of water consumption in industrial operations, are properly trained and have technical knowledge. In applications such as determining water quality requirements in production processes, measuring water and wastewater amounts, etc., it is necessary for the relevant personnel to have sufficient technical knowledge (MoAF, 2021). For this reason, it is important to provide training to staff on water use reduction, optimization and water saving policies. Practices such as involving personnel in water conservation studies, creating regular reports on water usage amounts before and after water efficiency initiatives, and sharing these reports with personnel support participation and motivation in the process. The technical, economic and environmental benefits to be obtained through personnel training give results in the medium or long term (TUBITAK MAM, 2016; MoAF, 2021). ## 12.1.2 General Precautionary Measures #### • Detection and reduction of water losses In industrial production processes, water losses occur in equipment, pumps and pipelines. First of all, water losses should be detected and leaks should be prevented by keeping equipment, pumps and pipelines in good condition by performing regular maintenance (IPPC BREF, 2003). Regular maintenance procedures should be established and particular attention should be paid to the following: - Adding pumps, valves, level switches, pressure and flow regulators to the maintenance checklist, - Carrying out inspections not only in the water system, but also especially for heat transfer and chemical distribution systems, broken and leaking pipes, barrels, pumps and valves, - regular cleaning of filters and pipelines, - Calibrating, routinely checking and monitoring measuring equipment such as chemical measuring and dispensing instruments, thermometers, etc. (IPPC BREF, 2003). With effective maintenance-repair, cleaning and loss control practices, savings ranging from 1-6% in water consumption can be achieved (Öztürk, 2014). #### • Minimization of spills and leaks Both raw material and water losses can be experienced due to spills and leaks in enterprises. In addition, if wet cleaning methods are used to clean the spilled areas, there may be increases in water consumption, wastewater amounts and pollution loads of wastewater (MoAF, 2021). In order to reduce raw material and product losses, spillage and splash losses are reduced by using anti-splashes, fins, drip trays, sieves (IPPC BREF, 2019). • Determination of wastewater flows that can be reused with or without treatment by characterizing the amount and quality of wastewater at all wastewater formation points By determining and characterizing wastewater formation points in industrial facilities, it is possible to reuse various wastewater streams with or without treatment (Öztürk, 2014; TUBITAK MAM, 2016; MoAF, 2021). In this context, filter backwash water, RO concentrates, blowdown water, condensate water, relatively clean washing and rinsing water can be reused without treatment in the same/different processes and in areas that do not require high water quality (such as plant and equipment cleaning). Apart from this, it is possible to reuse wastewater streams that cannot be reused directly in production processes after they are treated using appropriate treatment technologies. Membrane filtration processes are an integral part of many wastewater reuse systems. Nanofiltration (NF) and Reverse osmosis (RO) filtration systems are used for industrial wastewater recovery. Microfiltration (MF) and ultrafiltration (UF) are often used for the pretreatment of water before it goes to the NF or RO process (Singh et al., 2014). #### • Use of pressure washers for equipment cleaning, general cleaning, etc. Water nozzles are widely used in equipment plant cleaning. Effective results can be obtained by using correctly placed, appropriate nozzles to reduce water consumption and wastewater pollution loads. The use of active sensors and nozzles where high water consumption occurs and where possible is very important for the efficient use of water. Thanks to the replacement of mechanical equipment with pressurized nozzles, it is possible to achieve significant water savings (TUBITAK MAM, 2016). Reducing water consumption, wastewater generation and wastewater pollution load through the use of water pressure-optimised nozzles in technically feasible processes are the main environmental benefits of the application. #### • Use of automatic check-off valves to optimise water use Monitoring and controlling water consumption using flow control devices, meters and computer-aided monitoring systems provides significant technical, environmental and economic advantages (Öztürk, 2014). Monitoring the amount of water consumed within the facility and in various processes prevents water losses (TUBITAK MAM, 2016). It is necessary to use flow meters and meters in the facility and production processes, to use automatic shut-off valves and valves in continuously operating machines, to develop monitoring-control mechanisms according to water consumption and some determined quality parameters using computer-aided systems (TUBITAK MAM, 2016). With this application, it is possible to save up to 20-30% in water consumption on a process basis (DEPA, 2002; LCPC, 2010; IPPC BREF, 2003). By monitoring and controlling water consumption on a process basis, 3-5% savings can be achieved in process water consumption (Öztürk, 2014). ## • Collecting rainwater and evaluating it as an alternative water source in facility cleaning or in appropriate areas In today's world where water resources are decreasing, rainwater harvesting is frequently preferred especially in regions with low rainfall. There are different technologies and systems for rainwater collection and distribution systems. Cistern systems, infiltration into the ground, collection from the surface and filter systems are used. Rainwater collected by special drainage systems can be used for production processes, garden irrigation, tank and equipment cleaning, surface cleaning, etc., if it meets the required quality requirements (Witness et al., 2015). In various examples, 50% water savings were achieved in landscape irrigation by using roof rainwater collected in industrial facilities and using it in buildings and landscaping areas after storing it (Yaman, 2009). Perforated stones and green areas can be preferred in order to increase the permeability of the ground and to ensure that rainwater passes and is absorbed into the soil in the field (Yaman, 2009). Rainwater collected on the roofs of buildings can be used for car washing and garden irrigation. It is possible to reuse the collected water by recovering 95% of it with biological treatment after use (Şahin, 2010). #### Determination of the scope of reuse of washing and rinsing waters In industrial facilities, relatively clean wastewater such as washing-final rinsing wastewater and filter backwash wastewater can be reused without treatment in floor washing and garden irrigation processes that do not require high water quality (Öztürk, 2014). Thus, it is possible to save between 1-5% in raw water consumption (MoAF, 2021). #### Optimising the frequency and duration of regeneration (including rinses) in water softening systems Cationic ion exchange resins, which are one of the most commonly used methods for softening raw water in industrial facilities, are routinely regenerated. In regeneration, pre-washing, brine regeneration and final rinsing processes are carried out using raw water, respectively. Regeneration periods are determined depending on the hardness of the water. If the hardness is high, more frequent regeneration should be done in water softening systems. In regeneration processes, washing, regeneration and rinsing wastewater are usually removed directly. However, if the washing and final rinsing water is of raw water quality, it can be sent to the raw water tank or reused in processes that do not require high water quality, such as facility cleaning and green area irrigation (MoAF, 2021). It is very important to determine the optimum regeneration frequency in regeneration systems. Although regeneration in water softening systems is adjusted according to the frequency recommended by the supplier or depending on the flow rate and time entering the softening system, this frequency also varies depending on the calcium concentration in the raw water. For this reason, online hardness measurement is applied when determining the frequency of regeneration. Thus, regeneration frequencies can be optimized, as well as excessive washing, rinsing or backwashing with salt water can be prevented by using online hardness sensors. Water Softening Systems ## • Reuse of nanofiltration (NF) or reverse osmosis (RO) concentrates with or without purification depending on characterization According to wastewater characterization and appropriate points of use, the reuse potentials of other wastewater resulting from membrane processes (backwash without or with the use of chemicals, CIP cleaning, module cleaning, cleaning of chemical tanks, etc.) should be evaluated. Nanofiltration is a membrane-based liquid separation technique with low energy consumption and low operating pressures, which is suitable for the treatment of well water and surface water Reverse osmosis is also a membrane-based liquid separation technique that can separate smaller substances than nanofiltration (Akgül, 2016). Depending on the characterization of nanofiltration or reverse osmosis concentrates, savings are achieved by reusing them with or without treatment. Measures should be taken to reuse clean water in the production processes of filter backwash water in filtration processes and to reduce water consumption by using cleaning systems (MoAF, 2021). #### Documentation of production procedures and use by employees to prevent waste of water and energy In order to make efficient production in an enterprise, effective procedures should be applied in order to identify and evaluate potential problems and their sources and to control the production stages (Ayan, 2010). Determining and implementing appropriate procedures in production processes ensures more efficient use of resources (such as raw materials, water, energy, chemicals, personnel and time) and assurance of reliability and quality in production processes (Ayan, 2010). The presence of documented production procedures in production processes contributes to the development of the ability to develop sudden reflexes for the evaluation of operational performance and the solution of problems (TUBITAK MAM, 2016; MoAF, 2021). Effective implementation and monitoring of procedures created specifically for production processes is one of the most effective ways to ensure product quality, to receive feedback and to develop solution proposals (Ayan, 2010). Documenting, effectively implementing and monitoring production procedures is a good management practice and is an effective tool in structuring and ensuring the continuity of the cleaner production approach and environmental management system. In addition to the potential benefits, there may be changes in the cost and economic gains of the application depending on the sector or facility structure (TUBITAK MAM, 2016; MoAF, 2021). Although the establishment and monitoring of production procedures is not costly, the payback period may be short considering the savings and benefits it will provide (TUBITAK MAM, 2016; MoAF, 2021). Reverse Osmosis System #### • Use of closed-loop water cycles in appropriate processes In general, refrigerants are chemical compounds with certain thermodynamic properties that affect the performance of the cooling process, taking heat from the substances to be cooled and cooling them (Kuprasertwong et al., 2021). Water is used as a refrigerant in manufacturing industry processes and in many processes led by product cooling. While this cooling process is carried out, the water can be reused through the cooling tower or central cooling systems. If unwanted microbial growth occurs in the cooling water, it can be controlled by adding chemicals to the recirculation water (TUBITAK MAM, 2016). By reusing cooling water in processes such as cleaning, water consumption and the amount of wastewater generated are reduced. However, the need for energy for cooling and recirculation of cooling water emerges as a side interaction. Heat recovery is also provided by the use of heat exchangers in cooling waters. Generally, closed loop systems are used in facilities where water cooling systems are used. However, the cooling system blowdowns are removed by giving them directly into the wastewater treatment plant channel. These removed blowdown waters can be reused in suitable production processes. ## • Construction of closed storage and impermeable waste/scrap yard to prevent the transportation of toxic or hazardous chemicals for the aquatic environment In industrial facilities, closed and impermeable waste/scrap storage areas can be built to prevent the transport of toxic or dangerous chemicals to the receiving environments for the aquatic environment. This practice is already being implemented within the scope of the current environmental regulations in our country. Within the scope of the field studies carried out, a separate collection channel can be built in the toxic or hazardous substance storage areas in industrial facilities to prevent the separate collection of the leachate in question and its mixing with the natural water environments. ## • Use of automatic equipment and equipment (sensors, smart hand washing systems, etc.) that will save water at water usage points such as showers/toilets, etc. Water is very important in many sectors of the manufacturing industry, both for production processes and for personnel to provide the necessary hygiene standards. Water consumption can be achieved in various ways in the production processes of industrial facilities, as well as savings in water consumption by using equipment such as sensor taps and smart hand washing systems in the water usage areas of the personnel. Smart hand washing systems adjust the water, soap and air mixture in the right proportion and provide resource efficiency in addition to water savings. ## • Separate collection and treatment of gray water in the facility and use it in areas that do not require high water quality (green area irrigation, floor, floor washing, etc.) Wastewater generated in industrial facilities is not only industrial wastewater originating from production processes, but also includes wastewater originating from showers, sinks, kitchens, etc. Wastewater consisting of showers, sinks, kitchens, etc. is called gray water. Water savings can be achieved by treating these gray waters with various treatment processes and using them in areas that do not require high water quality. #### • Use of computer-aided control systems in production processes Since inefficient resource use and environmental problems in industrial facilities are directly related to input-output flows, process inputs-outputs should be defined in the best way specific to production processes (TUBITAK MAM, 2016). Thus, it becomes possible to develop measures to increase resource efficiency, economic and environmental performance. Organizing input-output inventories is considered a prerequisite for continuous improvement. While such management practices require the participation of technical staff and senior management, they pay for themselves in a short time with the work of various experts (IPPC BREF, 2003). It is necessary to use measurement equipment on the basis of application processes and to perform some routine analyzes/measurements specific to the processes. In order to obtain the highest level of efficiency from the application, using computerized monitoring systems as much as possible ensures that the technical, economic and environmental benefits to be obtained are increased (TUBITAK MAM, 2016). ## • Implementation of time optimization in production and arrangement of all processes to be completed as soon as possible In industrial production processes, planning the process from raw material to product transformation using the least process is an effective practice to reduce labor costs, resource use costs and environmental impacts and to ensure efficiency. In this context, it may be necessary to review the production processes and revise them to use the least number of process steps (TUBITAK MAM, 2016). In cases where the desired product quality cannot be achieved due to some inadequacies, inefficiency and design errors in basic production processes, production processes may need to be renewed. Therefore, in this case, the use of resources required in the manufacture of the unit amount of product and the amount of waste, emissions and solid waste generated increase. Time optimization in production processes is an effective practice (TUBITAK MAM, 2016) Computer Aided Control System https://sayachizmet.com/wp-content/uploads/2020/01/SCADA-nedir-1280x720-1.jpg.webpaths. 2.1.3 ## Precautions for Ancillary Processes METs for refrigeration systems • Increasing the number of cycles by using anti-corrosion and anti-scale inhibitors in systems with a closed water loop Cooling towers and evaporative condensers are efficient and cost-effective systems that remove heat from air conditioning and industrial process refrigeration systems (IPPC BREF, 2001b; MoAF, 2021). More than 95% of the circulating water in these systems can be recovered (TUBITAK MAM, 2016). In cooling systems, impurities remain in the recirculation water due to the fact that some of the recirculation water is worked on the basis of evaporation, and the impurity concentrations gradually increase in each cycle. Impurities that can be included in the cooling system together with the air can cause contamination in the recirculation water (TUBITAK MAM, 2016). If impurities and contaminants are not effectively controlled, they can cause the formation of boilerstone and corrosion, unwanted biological growth and sludge accumulation. This can become a chronic problem that leads to a decrease in the efficiency of heat transfer surfaces and an increase in operating costs. In this case, it is necessary to implement a water treatment program specially designed in terms of the quality of the feed water supplied to the cooling system, the cooling water system building material and operating conditions. In this context; blowdown control, biological growth control, corrosion control, avoiding the use of hard water, using sludge control chemicals, using filtration and sieve systems may be appropriate (TUBITAK MAM, 2016). In addition, the establishment and periodic implementation of an effective cleaning procedure and program is a good management practice in terms of protecting cooling systems. Corrosion is one of the most important problems in cooling systems. In the tower recirculation water, as the degree of hardness increases, dissolved solids (sulfate, chloride, carbonate, etc.) that cause corrosion as a result of the formation of limestone and deposits on the walls will cause abrasion on the surface over time. In addition, the formation of deposits negatively affects heat transfer and reduces energy efficiency. In order to prevent these negativities, it is necessary to implement a lime and corrosion preventive chemical conditioning program, to disinfect with biocide that prevents biological activation, to clean the sediments by subjecting the cooling towers in use to chemical and mechanical cleaning at least twice a year, and to keep the hardness and conductivity values of the reinforcement water as low as possible (IPPC BREF, 2001; Kayabek et al., 2005). In order to improve the quality of the supplementary water, it may be necessary to treat (condition) it using an appropriate treatment system. In addition, unwanted microbial growth needs to be kept under control (IPPC BREF, 2001b; MoAF, 2021). Due to micro-residues and deposits in the cooling water, blowdown occurs in cooling systems as well as in steam boilers. Deliberate draining of the cooling system to bring the increased density of solids in the cooling system to balance is called cooling blowdown. It is possible to reduce the use of biocides and blowdown amounts by pre-treating cooling water with appropriate methods and continuous monitoring of cooling water quality (TUBITAK MAM, 2016). Although the investment cost depends on the scale of the application, the payback period in expected investment expenses varies between 3 and 4 years (IPPC BREF, 2001). • Avoiding unnecessary cooling processes by identifying processes that need wet cooling: The boundaries of the plant site affect design parameters such as cooling tower height. Hybrid cooling system in cases where it is necessary to reduce the tower height can be applied. Hybrid refrigeration systems with and without evaporation (wet and dry) It is a combination of cooling systems. Depending on the ambient temperature, the hybrid cooling tower can be operated as a completely wet cooling tower or as a combined wet/dry cooling tower (TUBITAK MAM, 2016). In regions where there is not enough cooling water or in cases where water costs are high, the evaluation of dry cooling systems or hybrid cooling systems can be an effective solution to reduce the amount of cooling supplement water (TUBITAK MAM, 2016). ## • Installation of water softening systems for the healthy operation of cooling water recovery systems Cooling water is collected separately and used for cooling purposes or reused in appropriate processes (EC, 2009). In order for this system to work properly, a water softening system is required. It has suitable water quality in terms of cooling water, cleaning and reuse as irrigation water. However, due to the fact that it contains some hardness in its use as cooling water, an additional softening is required in order to prevent corrosion problems that will occur over time. Cooling water or before it can be reused in the process, these waters must be properly disinfected. In addition, it is possible to reuse the water in question not only in cooling processes but also in all production processes by treating it with appropriate treatment techniques (membrane filtration, advanced oxidation, chemical precipitation, granular activated carbon adsorption, etc.) (TUBITAK MAM, 2016). As the hardness of the cooling water increases, limestone and debris formation occurs on the walls. Deposit formation negatively affects heat transfer, reducing energy efficiency and increasing energy costs. With the increase in evaporation in the system, the ion concentration and conductivity value in the water increases. In order to prevent these negativities, it is necessary to apply lime and anticorrosion chemical conditioning to the cooling water, to disinfect with a biocide that prevents biological activation, to subject the cooling towers to chemical and mechanical cleaning at least twice a year, to clean the sediments, and to keep the hardness and conductivity values as low as possible (TUBITAK MAM, 2016). #### METs for ventilation and air conditioning systems #### • Reuse of the liquid formed by condensation from the ventilation system During the aeration cycle, condensate with good water quality can be produced in the system. For example, in a facility in Spain, condensate water with a conductivity of approximately 200 $\mu$ S in the ventilation system is collected in a tank and used to flush the automatic galvanizing line (MedClean, n.d.). ### Bibliography - Akgul, D. (2016). Cost Analysis of Drinking and Potable Water Production with Reverse Osmosis and Nanofiltration Systems in Türkiye. Istanbul Technical University Institute of Natural and Applied Sciences. - Ayan, B. (2010). International Certification Systems in Welded Manufacturing Enterprises. Izmir: Dokuz Eylül University, Institute of Social Sciences, Department of Business Administration, Master's Thesis. - Christopher, S. (1998). ISO 14001 and Beyond Environmental Management Systems in the Real World. - Delmas, M. (2009). Erratum to "Stakeholders and Competitive Advantage: The Case of ISO 14001. doi:10.1111/j.1937-5956.2004.tb00226.x. - DEPA. (2002). Danish Environmental Protection Agency (DEPA). Danish Experience, Best Avaible Techniques-Bat in the Clothing and Textile Industry. - EC. (2009). Resource Paper on the Most Appropriate Techniques for Energy Efficiency. European Commission. - Hutchens Jr., S. (2017). Using ISO 9001 or ISO 14001 to Gain a Competitive Advantage. - IPPC BREF. (2001b). Reference Document on the application of Best Available Techniques to Industrial Cooling Systems. Integrated Pollution Prevention and Control (IPPC). - IPPC BREF. (2003). Reference Document on Best Available Techniques for the Textiles Industry. Retrieved from https://eippcb.jrc.ec.europa.eu/reference - IPPC BREF. (2019). Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. https://eippcb.jrc.ec.europa.eu/reference. - ISO 14001 User Manual. (2015). Generic ISO 14001 EMS Templates User Manual. - Kayabek, C. Y., Yildirim, A. S., & İnce, F. (2005). Maintenance and Disinfection in Open Loop Refrigeration Systems (ACSS). Journal of Plumbing Engineering, Issue: 88, p. 35-39,. - Kuprasertwong et al., N. (2021). Computer-Aided Refrigerant Design: New Developments. - LCPC. (2010). Lebanese Cleaner Production Center. Cleaner Production Guide for Textile Industries. - MedClean. (n.d.). Pollution Prevention Case Studies No: 46. - Ozturk, E. (2014). Integrated Pollution Prevention and Control and Cleaner Production Practices in the Textile Industry. Isparta. - Potoski, M., & Prakash, A. (2005). Green Clubs and Voluntary Governance: ISO 14001 and Firms' Regulatory Compliance. American Journal of Political Science, 235-248. - Singh, M., Liang, L., Basu, A., Belsan, M., Hallsby, G., & Morris, W. (2014). 3D TRASAR™ Technologies for Reliable Wastewater Recycling and Reuse. doi:10.1016/B978-0-08-099968-5.00011-8. - Sahin, N. I. (2010). Water conservation in buildings. Istanbul Technical University, Institute of Natural and Applied Sciences, M.Sc. Thesis. - Tanık, A., Öztürk, İ., & Cüceloğlu, G. (2015). Reuse of Treated Wastewater and Rainwater Harvesting Systems (Handbook). Ankara: Union of Municipalities of Türkiye. - MoAF. (2021). Technical Assistance for Economic Analysis and Water Efficiency Studies within the Scope of River Basin Management Plans in 3 Pilot Basins. T.R. Ministry of Agriculture and Forestry. - TUBITAK MAM. (2016). Determination of Cleaner Production Opportunities and Applicability in Industry (SANVER) Project, Final Report. The Scientific and Technological Research Council of Türkiye Marmara Research Center. - Yaman, C. (2009). Siemens Gebze Facilities Green Building. IX. National Plumbing Engineering Congress. | Industrial Water Use Efficiency Project According to NACE Codes | | |-----------------------------------------------------------------|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Resitpasa Mah Katar Cd. Arı Teknokent 1 2/5, D:12, 34469 Sariyer/Istanbul (0212) 276 65 48 www.iocevre.com