

T.R. MINISTRY OF AGRICULTURE AND FORESTRY GENERAL DIRECTORATE OF WATER MANAGEMENT

Water Efficiency
Guidance Documents Series

LIGNITE MINING

NACE CODE: 05.20

ANKARA 2023

This document was prepared by the Contractor io Environmental Solutions R&D Ltd. Sti on behalf of the Ministry of Agriculture and Forestry, General Directorate of Water Management.

All rights reserved.

This document and its content cannot be used or reproduced without the permission of the General Directorate of Water Management.

Table of contents

	Abbreviations	4
1	Entrance	5
2	Study Scope	8
2.1	Lignite Mining	10
2.1.1	Good Management Practices	13
2.1.2	General Water Efficiency BATs	16
	Bibliography	21

Abbreviations

WTP	Wastewater Treatment Plant
EU	European Union
SSM	Suspended Solid Matter
BREF	Best Available Techniques Reference Document
EMS	Environmental Management System
MoEUCC	Republic of Turkey Ministry of Environment, Urbanization and Climate Change
NOM	Natural Organic Matter
EMAS	Eco Management and Audit Program Directive
EPA	United States Environmental Protection Agency
IPPC	Industrial Pollution Prevention and Control
ISO	International Organization for Standardization
BAT	Best Available Techniques
NACE	Statistical Classification of Economic Activities
GSWM	General Directorate of Water Management
RO	Reverse Osmosis
MAF	Ministry of Agriculture and Forestry of the Republic of Turkey
TurkStat	Turkish Statistical Institute
NF	Nanofiltration
MF	Microfiltration
UF	Ultrafiltration
GW	Groundwater
SW	Surface Water

1Introduction

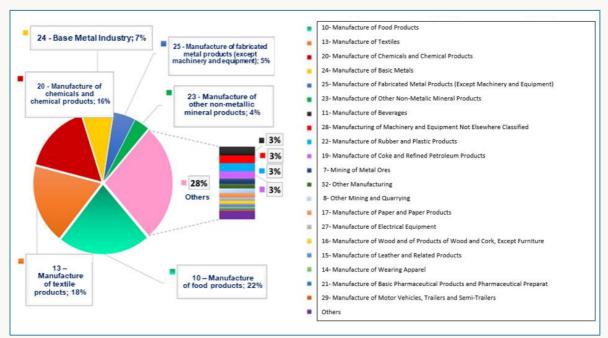
Türkiye is located in the Mediterranean basin, where the effects of global climate change are felt intensely, and is considered among the regions that will be most affected by the negative effects of climate change. Projections on how our water resources in our basins will be affected in the future due to climate change show that our water resources may decrease by up to 25 percent in the next hundred years.

For 2022, the annual amount of usable water per capita in Türkiye is 1,313 m³, and it is expected that the annual amount of usable water per capita will fall below 1,000 cubic meters after 2030 due to human pressures and the effects of climate change. It is obvious that if the necessary measures are not taken, Türkiye will become a country suffering from water scarcity in the very near future and will bring many negative social and economic consequences. As can be understood from the results of future projections, the risk of drought and water scarcity awaiting Türkiye necessitates the efficient and sustainable use of Türkiye's existing water resources.

The concept of water efficiency can be defined as "the use of the least amount of water in the production of a product or service". Water efficiency approach; It is based on the rational, sharing, equitable, efficient and effective use of water in all sectors, especially drinking water, agriculture, industry and household uses, taking into account the needs of not only people but also ecosystem sensitivity and all living things by protecting it in terms of quantity and quality.

With the increasing demand for water resources, the change in precipitation and temperature regimes as a result of climate change, the increase in population, urbanization and pollution, it is becoming more and more important to share the usable water resources among the users in a fair and balanced way. For this reason, it has become a necessity to create a roadmap based on efficiency and optimization in order to protect and use limited water resources with sustainable management practices.

In the sustainable development vision determined by the United Nations; within the scope of the goals of "Goal 7: Ensuring Environmental Sustainability" from the Millennium Development Goals, "Goal 9: Industry, Innovation and Infrastructure" and "Goal 12: Responsible Production and Consumption" from the Sustainable Development Goals, issues such as efficient, fair and sustainable use of resources, especially water, environment-friendly production and consumption that carries concerns for future generations are included.


In the European Green Deal Action Plan prepared by Türkiye within the scope of the European Green Deal, where member countries agree on goals such as implementing a clean, circular economy model with the goal of carbon neutrality, expanding the efficient use of resources, and reducing environmental impacts, actions emphasizing water and resource efficiency in various fields, especially in industry, production and consumption have been determined.

The "Industrial Emissions Directive (EED)", which is one of the most important components of the European Union environmental legislation in terms of industry, includes the measures to be taken to control, prevent or reduce the discharges/emissions from industrial activities to the receiving environment, including air, water, and soil, with an integrated approach. In the Directive, Best Available Techniques (BAT) are presented in order to systematize the applicability of cleaner production processes and to eliminate the difficulties experienced in practice. Considering the costs and benefits, METs are the most effective implementation techniques for a high level of environmental protection. In accordance with the Directive, Reference Documents (BAT-BREF) have been prepared for each sector, in which the METs are explained in detail. In BREF documents, METs are presented in a general framework such as good management practices, general precautionary techniques, chemical use and management, techniques for various production processes, wastewater management, emission management, and waste management.

The Ministry of Agriculture and Forestry, General Directorate of Water Management carries out studies aimed at disseminating efficient practices in urban, agricultural, industrial, and individual water use and increasing social awareness. "Water Efficiency Strategy Document and Action Plan within the Framework of Adaptation to the Changing Climate (2023-2033)" entered into force with the Presidential Circular No. 2023/9Water efficiency action plans addressing all sectors and stakeholders have been prepared. In the Industrial Water Efficiency Action Plan, a total of 12 actions have been determined for the period 2023-2033 and responsible and relevant institutions have been appointed for these actions. Within the scope of the said Action Plan; Carrying out studies to determine specific water usage ranges and quality requirements on the basis of sub-sectors in the industry, organizing technical training programs and workshops on a sectoral basis, and preparing water efficiency guidance documents are defined as the responsibility of the General Directorate of Water Management.

On the other hand, with the "Industrial Water Use Efficiency Project According to NACE Codes" carried out by the Ministry of Agriculture and Forestry, General Directorate of Water Management, the best sectoral techniques specific to our country have been determined within the scope of studies to improve water efficiency in the industry. As a result of the study, sectoral guidance documents and action plans classified with NACE codes, which include the measures recommended to improve water use efficiency in sectors with high water consumption operating in Türkiye, have been prepared.

As in the world, the sectors with the highest share in water consumption in Türkiye are food, textile, chemistry and basic metal sectors. Within the scope of the studies, field visits were carried out in enterprises representing 152 sub-sectors in 35 main sectors, especially food, textile, chemistry, basic metal industry, which will represent production areas of different capacities and diversity within the scope of NACE Codes, which operate in our country and have high water consumption, and provide data on water supply, sectoral water use, wastewater generation and recycling. and the best available techniques (BAT) and sectoral reference documents (BREF) published by the European Union, water efficiency, cleaner production, water footprint, etc.

Distribution of water use in industry on a sectoral basis in Türkiye

As a result of the studies, specific water consumption and potential savings rates for the processes of the enterprises were determined for 152 different 4-digit NACE codes with high water consumption, and water efficiency guidance documents were prepared by taking into account the EU best available techniques (BAT) and other cleaner production techniques. The guidelines include 500 techniques for water efficiency (BAT);

It has been examined under 4 main groups: (i) Good Management Practices, (ii) General Water Efficiency BATs, (iii) Measures Related to Auxiliary Processes and (iv) Sector-Specific Measures.

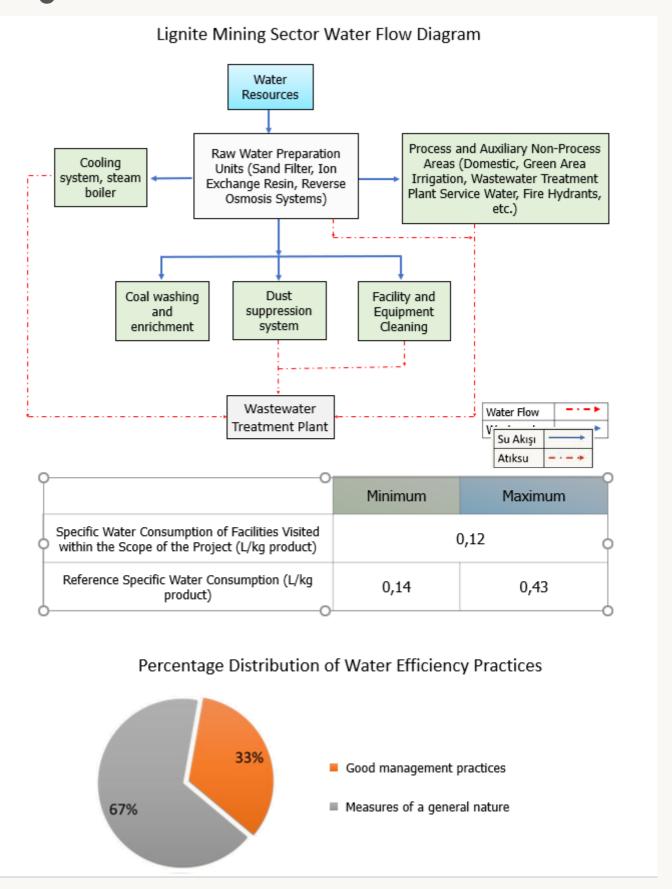
Within the scope of the project, environmental benefits, operational data, technical specifications-requirements and applicability criteria were taken into account during the determination of BATs for each sector. In the determination of BATs, BREF documents were not limited to the BATs, but also different data sources such as current literature data, real case studies, innovative practices, and reports of sector representatives on a global scale were examined in detail and sectoral BAT lists were created. In order to evaluate the suitability of the BAT lists created for the local industrial infrastructure and capacity of our country, the BAT lists prepared specifically for each NACE code were prioritized by the enterprises by scoring them on the criteria of water saving, economic saving, environmental benefit, applicability, cross-media impact, and the final BAT lists were determined using the scoring results. Sectoral water efficiency guidelines have been created on the basis of the NACE code based on the water and wastewater data of the facilities visited within the scope of the project and the final BAT lists highlighted by the sectoral stakeholders and determined by taking into account the local dynamics specific to our country.

2 Scope of the Study

The guidance documents prepared within the scope of water efficiency measures in the industry include the following main sectors:

- Crop and animal production, hunting and related service activities (including sub-production areas represented by 6 four-digit NACE Codes)
- Fisheries and aquaculture (including 1 sub-production area represented by a four-digit NACE Code)
- Extraction of coal and lignite (including 2 sub-production areas represented by a four-digit NACE Code)
- Service activities in support of mining (including 1 sub-production area represented by a four-digit NACÉ Code)
- Metal ore mining (including 2 sub-production areas represented by a four-digit NACE Code)
- Other mining and quarrying (including 2 sub-production areas represented by a four-digit NACE Code)
- Manufacturing of food products (including 22 sub-production areas represented by a four-digit NACE Code)
- Manufacturing of beverages (including 4 sub-production areas represented by a four-digit NACE Code)
- Manufacturing of tobacco products (including 1 sub-production area represented by a four-digit NACE Code)
- Manufacturing of textiles (including 9 sub-production areas represented by a four-digit NACE Code)
- Manufacturing of apparel (including 1 sub-production area represented by a four-digit NACE Code)
- Manufacturing of leather and related products (including 3 sub-production areas represented by a four-digit NACE Code)
- Manufacturing of wood, wood products and cork products (except furniture); manufacture of articles made by knitting from reeds, straw and similar materials (including 5 sub-production areas represented by a four-digit NACE Code)
- Manufacturing of paper and paper products (including 3 sub-production areas represented by a fourdigit NACE Code)
- Manufacturing of coke and refined petroleum products (including 1 sub-production area represented by a four-digit NACE Code)
- Manufacturing of chemicals and chemical products (including 13 sub-production areas represented by a four-digit NACE Code)
- Manufacturing of basic pharmaceutical products and pharmaceutical materials (including 1 subproduction area represented by a four-digit NACE Code)
- Manufacturing of rubber and plastic products (including 6 sub-production areas represented by a fourdigit NACE Code)
- Manufacturing of other non-metallic mineral products (including 12 sub-production areas represented by a four-digit NACE Code)
- Base metal industry (including 11 sub-production areas represented by a four-digit NACE Code)
- Manufacturing of fabricated metal products (excluding machinery and equipment) (including 12 subproduction areas represented by a four-digit NACE Code)
- Manufacturing of computers, electronic and optical products (including sub-production area represented by 2 four-digit NACE Codes)
- Manufacturing of electrical equipment (including 7 sub-production areas represented by a four-digit NACE Code)
- Manufacturing of machinery and equipment, n.e.c. (including 8 sub-production areas represented by a four-digit NACE Code)
- Manufacturing of motor vehicles, trailers and semi-trailers (including 3 sub-production areas represented by a four-digit NACE Code)

- Manufacturing of other means of transport (including 2 sub-production areas represented by a four-digit NACE Code)
- Other productions (including 2 sub-production areas represented by a four-digit NACE Code)
- Installation and repair of machinery and equipment (including 2 sub-production areas represented by a four-digit NACE Code)
- Electricity, gas, steam and ventilation system production and distribution (including 2 subproduction areas represented by a four-digit NACE Code)
- Waste collection, remediation and disposal activities; recovery of materials (including 1 subproduction area represented by a four-digit NACE Code)
- Construction of non-building structures (including 1 sub-production area represented by a four-digit NACE Code)
- Storage and supporting activities for transportation (including 1 sub-production area represented by a four-digit NACE Code)
- Accommodation (including 1 sub-production area represented by a four-digit NACE Code)
- Educational Activities (Higher Education Campuses) (including 1 sub-production area represented by a four-digit NACE Code)
- Sports, entertainment and recreational activities (including 1 sub-production area represented by a four-digit NACE Code)


Extraction of coal and lignite

Under the coal and lignite extraction sector, the sub-production branches for which guide documents have been prepared are as follows:

05.10 Hard coal mining

05.20 Lignite mining

2.1Lignite Mining (NACE 05.20)

The quarry stone and coal, which are extracted from the lignite mining operation, are separated by passing through crushers and sieves. The stones, along with the quarry stones, are sent to the landfill. Then, the raw coal is taken to the enrichment process. Coal beneficiation can be done by dry beneficiation system, lavvar system, centrifuges, and filter presses. After the coal enrichment process is completed, shale and coal, which is the final product, are formed.

In the lignite coal mining sector, water is consumed in coal washing and coal enrichment processes in lavvar plants. In addition, water consumption is carried out to prevent dusting. Raw water preparation units such as activated carbon filters, ion exchange resins, and reverse osmosis, which are used to produce soft water for use in production processes in the sector, and filter washing, resin regeneration, and membrane cleaning processes also consume significant amounts of water. In addition, water consumption occurs in auxiliary units such as cooling towers and steam boilers.

Reference specific water consumption in the lignite mining sector is in the range of 0.14 - 0.43 L/kg. The specific water consumption of the production branch analyzed within the scope of the study remains in the range of 0.12 L/kg. With the implementation of good management practices and general water efficiency BATs, it is possible to achieve 14-20% water recovery in the sector.

Use of Water for Dust Prevention at the Mine Site

Coal Enrichment - Lavvar Plant

05.20 Lignite Mining Priority water efficiency implementation techniques recommended under the NACE code are presented in the table below.

		table below.
NACE Kodu	NACE Kodu Açıklaması	Prioritized Sectoral Water Efficiency Techniques
05.20	Lignite mining	Good Management Practices
		. Establishment of an environmental management system
		. Preparation of water flow diagrams and mass balances for water
		Preparation of a water efficiency action plan to reduce water use and prevent water pollution
		. Providing technical training to personnel for the reduction and optimization of water us
		. Good production planning to optimize water consumption
		. Setting water efficiency targets
		Water used in production processes and auxiliary processes and wastewater generated monitoring in terms of quantity and quality and adapting this information to the environmental management system
		General Water Efficiency BATs
		. Minimization of spills and leaks
		Recovery of water from rinsing solutions and reuse of recovered water in processes appropriate to its quality
		Use of automatic equipment and equipment (sensors, smart hand washing systems, etc.) that will save water at water usage points such as showers/toilets, etc.
		. Use of pressure washers for equipment cleaning, general cleaning, etc.
		. Avoiding the use of drinking water in production lines
		. Detection and reduction of water losses
		. Use of automatic check-off valves to optimise water use
		Documentation of production procedures and use by employees to prevent waste of water and energy
		. Prevention of mixing of clean water streams with dirty water streams
		Characterization of wastewater quantities and qualities at all wastewater generation points
		Determination of wastewater streams that can be reused with or without treatment
		2. Use of closed-loop water cycles in appropriate processes
		3. Use of computer-aided control systems in production processes
		4. Separate collection and treatment of gray water in the facility and use it in areas that do not require high water quality (green area irrigation, floor, floor washing, etc.)
		5. Collecting rainwater and evaluating it as an alternative water source in facility cleaning or in appropriate areas
		A total of 21 techniques have been proposed in this sector.

Lignite Mining NACE Code;

- (i) Good Management Practices,
- (ii) General Measures are given under separate headings.

2.1.1 Good Management Practices

• Establishment of an environmental management system

Environmental Management Systems (EMS) include the organizational structure, responsibilities, procedures and resources required to develop, implement and monitor the environmental policies of industrial organizations. The establishment of the environmental management system improves the decision-making processes of institutions between raw materials, water-wastewater infrastructure, planned production process, and different treatment techniques. Environmental management organizes how to manage resource procurement and waste discharge demands with the highest economic efficiency, without compromising product quality and with the least possible impact on the environment.

The most widely used Environmental Management Standard is ISO 14001. Alternatives include the Eco Management and Audit Programme Directive (EMAS) (761/2001). It has been developed for the evaluation, improvement, and reporting of the environmental performance of enterprises. It is one of the leading practices within the scope of ecoefficiency (cleaner production) in EU legislation and participation is provided voluntarily (TUBITAK MAM, 2016; TOB, 2021). The benefits of establishing and implementing an Environmental Management System are as follows:

- Economic benefits can be achieved by improving business performance (Christopher, 1998).
- International Organization for Standardization (ISO) standards are adopted, resulting in greater compliance with global legal and regulatory requirements (Christopher, 1998).
- While the penalty risks related to environmental responsibilities are minimized, the amount of waste, resource consumption and operating costs are reduced (Delmas, 2009).
- The use of internationally accepted environmental standards eliminates the need for multiple registrations and certifications for businesses operating in different locations around the world (Hutchens Jr., 2017).
- Especially in recent years, the improvement of the internal control processes of companies is also important to consumers. The implementation of environmental management systems provides a competitive advantage over companies that do not adopt the standard. It also contributes to the better position of institutions in international areas/markets (Potoski & Prakash, 2005).

The benefits listed above depend on numerous factors such as the production process, management practices, resource use, and potential environmental impacts (TOB, 2021). Savings of 3-5% in water consumption can be achieved with applications such as the preparation of annual inventory reports with similar content to the environmental management system and monitoring of inputs and outputs in production processes in terms of quantity and quality (Öztürk, 2014). The total duration of the EMS development and implementation phases is estimated to be 8-12 months (ISO 14001 User Manual, 2015).

Industrial organizations also carry out studies within the scope of the ISO 14046 Water Footprint Standard, which is an international standard that defines the requirements and guidelines for assessing and reporting their water footprint. With the implementation of the relevant standard, it is aimed to reduce the use of freshwater and environmental impacts required for production. In addition, the ISO 46001 Water Efficiency Management Systems Standard, which helps industrial organizations to save water and reduce operating costs, helps organizations to improve their water efficiency policies by monitoring, benchmarking and reviewing.

- Good production planning to optimize water consumption
- In industrial production processes, planning a raw material until it turns into a product by using the least process is an effective practice to reduce labor costs, resource use costs and environmental impacts and to ensure efficiency (TUBITAK MAM, 2016; TOB, 2021). Production planning in industrial facilities by considering the water efficiency factor reduces water consumption and wastewater. Modifying production processes or combining some processes in industrial facilities provides significant benefits in terms of water efficiency and time planning (TOB, 2021).
- Preparation of a water efficiency action plan in order to reduce water use and prevent water pollution Preparation of an action plan that includes what to do in the short, medium, and long term in order to reduce the amount of water-wastewater in industrial facilities and to prevent water pollution in terms of water efficiency is important. At this point, determining the water needs throughout the facility and in the production processes, water quality requirements should be determined at the points of use, wastewater formation points, and wastewater characterization should be done (TOB, 2021). At the same time, it is necessary to determine the measures to be implemented to reduce water consumption, wastewater generation, and pollution loads, to make feasibility and to prepare action plans for the short-medium-long term. In this way, water efficiency and sustainable water use are ensured in facilities (TOB, 2021).
- Monitoring the water used in production processes and auxiliary processes and the wastewater generated in terms of quantity and quality and adapting this information to the environmental management system, There are resource uses in industrial facilities, and as a result of resource use, inefficiency, and environmental problems can be caused by input-output flows. Therefore, it is necessary to monitor the water and wastewater used in production processes and auxiliary processes in terms of their quantity and quality (TUBITAK MAM, 2016; TOB, 2021). Process-based quantity and quality monitoring, together with other good management practices (personnel training, the establishment of an environmental management system, etc.), can be used to reduce energy consumption by 6-10%, water consumption, and wastewater amounts. It can provide a reduction of up to 25% (Öztürk, 2014).

The main stages for monitoring water and wastewater in terms of quantity and quality are:

- Use of monitoring equipment (such as meters) to monitor consumption of water, energy, etc. on the basis of processes,
- Establishment of monitoring procedures,
- Determining the use/exit points of all inputs and outputs (raw materials, chemicals, water, products, wastewater, sludge, solid waste, hazardous waste and by-products) related to the production process, monitoring, documenting, comparatively evaluating and reporting in terms of their quantity and quality,
- Monitoring raw material losses in production processes where raw materials are transformed into products and taking measures against raw material losses (MoEUB, 2020e).

• Providing technical training to personnel for the reduction and optimization of water use

With this measure, water saving and water recovery can be achieved by increasing the training and awareness of the personnel, and water efficiency can be achieved by reducing water consumption and costs. Due to the fact that the personnel do not have the necessary technical knowledge in industrial facilities, problems may arise with the use of high amounts of water and wastewater formation. For example, it is important that cooling tower operators, who represent a significant proportion of water consumption in industrial operations, are properly trained and have technical knowledge. In applications such as determining water quality requirements in production processes, measuring water and wastewater amounts, etc., it is necessary for the relevant personnel to have sufficient technical knowledge (TOB, 2021). For this reason, it is important to provide training to staff on water use reduction, optimization, and water saving policies. Practices such as involving personnel in water conservation studies, creating regular reports on water usage amounts before and after water efficiency initiatives, and sharing these reports with personnel support participation and motivation in the process. The technical, economic, and environmental benefits to be obtained through personnel training give results in the medium or long term (TUBITAK MAM, 2016; TOB, 2021).

Setting water efficiency targets

The first step in achieving water efficiency in industrial facilities is to set targets (TOB, 2021). For this, first of all, a detailed water efficiency analysis should be carried out on the basis of processes. Thus, unnecessary water use, water losses, wrong practices affecting water efficiency, process losses, and reusable water-wastewater resources with or without treatment can be determined. It is also extremely important to set water saving potential and water efficiency targets for each production process and the plant as a whole (TOB, 2021).

Preparation of water flow diagrams and mass balances for water

Determination of water use and wastewater generation points in industrial facilities, creation of water-wastewater balances in production processes and auxiliary processes other than production processes are the basis of many good management practices in general. Creation of process profiles throughout the plant and on the basis of production processes; It facilitates the identification of unnecessary water usage points and high water use points, the evaluation of water recovery opportunities, process modifications and the determination of water losses (TOB, 2021).

212 General Water Efficiency BATs

Detection and reduction of water losses

In industrial production processes, water losses occur in equipment, pumps, and pipelines. First of all, water losses should be detected and leaks should be prevented by keeping equipment, pumps and pipelines in good condition by performing regular maintenance (IPPC BREF, 2003). Regular maintenance procedures should be established and particular attention should be paid to the following:

- Adding pumps, valves, level switches, pressure and flow regulators to the maintenance checklist,
- Carrying out inspections not only in the water system, but also especially for heat transfer and chemical distribution systems, broken and leaking pipes, barrels, pumps and valves, regular cleaning of filters and pipelines,
- Calibrating, routinely checking and monitoring measuring equipment such as chemical measuring and dispensing instruments, thermometers, etc. (IPPC BREF, 2003).

With effective maintenance-repair, cleaning and loss control practices, savings ranging from 1-6% in water consumption can be achieved (Öztürk, 2014).

Minimization of spills and leaks

Both raw material and water losses can be experienced due to spills and leaks in enterprises. In addition, if wet cleaning methods are used to clean the spilled areas, there may be increases in water consumption, wastewater amounts and pollution loads of wastewater (TOB, 2021). In order to reduce raw material and product losses, spillage and splash losses are reduced by using anti-splashes, fins, drip trays, and sieves (IPPC BREF, 2019).

Prevention of mixing of clean water streams with dirty water streams

By determining the wastewater formation points and characterizing the wastewater in industrial facilities, wastewater with high pollution load and relatively clean wastewater can be collected in separate lines (TUBITAK MAM, 2016; TOB, 2021). In this way, wastewater streams of appropriate quality can be reused with or without treatment. By separating wastewater streams, water pollution is reduced, treatment performances are increased, energy consumption can be reduced in relation to reducing treatment needs, and emissions are reduced by ensuring wastewater recovery and recovery of valuable materials. In addition, heat recovery from separated hot wastewater streams is also possible (TUBITAK MAM, 2016; TOB, 2021) Separation of wastewater streams often requires high investment costs, and costs can be reduced when it is possible to recover large amounts of wastewater and energy (IPPC BREF, 2006).

• Characterizing the amount and quality of wastewater at all wastewater formation points and determining the wastewater flows that can be reused with or without treatment

By determining and characterizing wastewater formation points in industrial facilities, it is possible to reuse various wastewater streams with or without treatment (Öztürk, 2014; TUBITAK MAM, 2016; TOB, 2021). In this context, filter backwash water, CTR concentrates, blowdown water, condensate water, and relatively clean washing and rinsing water can be reused without treatment in the same/different processes and in areas that do not require high water quality (such as plant and equipment cleaning). Apart from this, it is possible to reuse wastewater streams that cannot be reused directly in production processes after they are treated using appropriate treatment technologies.

Membrane filtration processes are an integral part of many wastewater reuse systems. Nanofiltration (NF) and Reverse osmosis (CTR) filtration systems are used for industrial wastewater recovery. Microfiltration (MF) and ultrafiltration (UF) are often used for the pretreatment of water before it goes to the NF or CTR process (Singh et al., 2014).

• Use of pressure washers for equipment cleaning, general cleaning, etc.

Water nozzles are widely used in equipment plant cleaning. Effective results can be obtained by using correctly placed, appropriate nozzles to reduce water consumption and wastewater pollution loads. The use of active sensors and nozzles where high water consumption occurs and where possible is very important for the efficient use of water. Thanks to the replacement of mechanical equipment with pressurized nozzles, it is possible to achieve significant water savings (TUBITAK MAM, 2016). Reducing water consumption, wastewater generation and wastewater pollution load through the use of water pressure-optimised nozzles in technically feasible processes are the main environmental benefits of the application.

Avoiding the use of drinking water in production lines

In different sub-sectors of the manufacturing industry, water with different water quality can be used in accordance with production purposes. In industrial facilities, raw water obtained from underground water sources is used in production processes after being treated. However, in some cases, although it is costly in production processes, drinking water can be used directly, or raw water is disinfected with chlorinated compounds and evaluated in production processes. These waters, which contain residual chlorine, can react with organic compounds (natural organic substances (NOS)) in the water in the production processes and form disinfectant by-products harmful to living metabolisms (Özdemir & Toröz, 2010; Oğur et al.; TOB, 2021). The use of drinking water containing residual chlorine compounds or raw water disinfected with chlorinated compounds should be avoided as much as possible. In the disinfection of raw water, disinfection methods with high oxidation ability such as ultraviolet (UV), ultrasound (US) or ozone can be used instead of chlorine disinfection. In order to increase the technical, economic, and environmental benefits to be provided by the application, determining and using the water quality parameters required in each production process helps to reduce unnecessary water supply and treatment costs. With this application, it is possible to reduce water, energy and chemical costs (TUBITAK MAM, 2016).

• Use of automatic check-off valves to optimise water use

Monitoring and controlling water consumption using flow control devices, meters, and computer-aided monitoring systems provides significant technical, environmental, and economic advantages (Öztürk, 2014). Monitoring the amount of water consumed within the facility and in various processes prevents water losses (TUBITAK MAM, 2016). It is necessary to use flow meters and meters in the facility and production processes, to use automatic shut-off valves and valves in continuously operating machines, to develop monitoring-control mechanisms according to water consumption and some determined quality parameters using computer-aided systems (TUBITAK MAM, 2016). With this application, it is possible to save up to 20-30% in water consumption on a process basis (DEPA, 2002; LCPC, 2010; IPPC BREF, 2003). By monitoring and controlling water consumption on a process basis, 3-5% savings can be achieved in process water consumption (Öztürk, 2014).

Collecting rainwater and evaluating it as an alternative water source in facility cleaning or in appropriate areas

In today's world where water resources are decreasing, rainwater harvesting is frequently preferred especially in regions with low rainfall. There are different technologies and systems for rainwater collection and distribution systems. Cistern systems, infiltration into the ground, collection from the surface, and filter systems are used. Rainwater collected by special drainage systems can be used for production processes, garden irrigation, tank and equipment cleaning, surface cleaning, etc., if it meets the required quality requirements (Witness et al., 2015).

In various examples, 50% water savings were achieved in landscape irrigation by using roof rainwater collected in industrial facilities and using it in buildings and landscaping areas after storing it (Yaman, 2009). Perforated stones and green areas can be preferred in order to increase the permeability of the ground and to ensure that rainwater passes and is absorbed into the soil in the field (Yaman, 2009). Rainwater collected on the roofs of buildings can be used for car washing and garden irrigation. It is possible to reuse the collected water by recovering 95% of it with biological treatment after use (Şahin, 2010).

• Use of automatic equipment and equipment (sensors, smart hand washing systems, etc.) that will save water at water usage points such as showers/toilets, etc.

Water is very important in many sectors of the manufacturing industry, both for production processes and for personnel to provide the necessary hygiene standards. Water consumption can be achieved in various ways in the production processes of industrial facilities, as well as savings in water consumption by using equipment such as sensor taps and smart hand washing systems in the water usage areas of the personnel. Smart hand washing systems adjust the water, soap and air mixture in the right proportion and provide resource efficiency in addition to water savings.

Use of closed-loop water cycles in appropriate processes

In general, refrigerants are chemical compounds with certain thermodynamic properties that affect the performance of the cooling process, taking heat from the substances to be cooled and cooling them (Kuprasertwong et al., 2021).

Water is used as a refrigerant in manufacturing industry processes and in many processes led by product cooling. While this cooling process is carried out, the water can be reused through the cooling tower or central cooling systems. If unwanted microbial growth occurs in the cooling water, it can be controlled by adding chemicals to the recirculation water (TUBITAK MAM, 2016).

By reusing cooling water in processes such as cleaning, water consumption and the amount of wastewater generated are reduced. However, the need for energy for cooling and recirculation of cooling water emerges as a side interaction. Heat recovery is also provided by the use of heat exchangers in cooling waters. Generally, closed loop systems are used in facilities where water cooling systems are used. However, the cooling system blowdowns are removed by giving them directly into the wastewater treatment plant channel. These removed blowdown waters can be reused in suitable production processes.

• Documentation of production procedures and use by employees to prevent waste of water and energy

In order to make efficient production in an enterprise, effective procedures should be applied in order to identify and evaluate potential problems and their sources and to control the production stages (Ayan, 2010). Determining and implementing appropriate procedures in production processes ensures more efficient use of resources (such as raw materials, water, energy, chemicals, personnel, and time) and assurance of reliability and quality in production processes (Ayan, 2010). The presence of documented production procedures in production processes contributes to the development of the ability to develop sudden reflexes for the evaluation of operational performance and the solution of problems (TUBITAK MAM, 2016; TOB, 2021). Effective implementation and monitoring of procedures created specifically for production processes is one of the most effective ways to ensure product quality, to receive feedback, and to develop solution proposals (Ayan, 2010). Documenting, effectively implementing and monitoring production procedures is a good management practice and is an effective tool in structuring and ensuring the continuity of the cleaner production approach and environmental management system. In addition to the potential benefits, there may be changes in the cost and economic gains of the application depending on the sector or facility structure (TUBITAK MAM, 2016; TOB, 2021). Although the establishment and monitoring of production procedures are not costly, the payback period may be short considering the savings and benefits it will provide (TUBITAK MAM, 2016; TOB, 2021).

• Recovery of water from rinsing solutions and reuse of recovered water in processes appropriate to its quality

Rinsing wastewater in industrial facilities can be reused without treatment in relatively clean wastewater, floor washing, and garden irrigation processes that do not require high water quality (Öztürk, 2014). In raw water consumption with the recovery of rinse water. Savings of 1-5% can be achieved.

• Use of computer-aided control systems in production processes

Since inefficient resource use and environmental problems in industrial facilities are directly related to input-output flows, process inputs-outputs should be defined in the best way specific to production processes (TUBITAK MAM, 2016). Thus, it becomes possible to develop measures to increase resource efficiency, economic, and environmental performance. Organizing input-output inventories is considered a prerequisite for continuous improvement. While such management practices require the participation of technical staff and senior management, they pay for themselves in a short time with the work of various experts (IPPC BREF, 2003). It is necessary to use measurement equipment on the basis of application processes and to perform some routine analyzes/measurements specific to the processes. In order to obtain the highest level of efficiency from the application, using computerized monitoring systems as much as possible ensures that the technical, economic and environmental benefits to be obtained are increased (TUBITAK MAM, 2016).

• Separate collection and treatment of gray water in the facility and use it in areas that do not require high water quality (green area irrigation, floor, floor washing, etc.)

Wastewater generated in industrial facilities is not only industrial wastewater originating from production processes, but also includes wastewater originating from showers, sinks, kitchens, etc. Wastewater consisting of showers, sinks, kitchens, etc. is called gray water. Water savings can be achieved by treating these gray waters with various treatment processes and using them in areas that do not require high water quality.

https://sayachizmet.com/wp-content/uploads/2020/01/SCADA-nedir-1280x720-1.jpg.webp

Bibliography

- Ayan, B. (2010). International Certification Systems in Welded Manufacturing Enterprises. Izmir: Dokuz Eylül University, Institute of Social Sciences, Department of Business Administration, Master's Thesis.
- Christopher, S. (1998). ISO 14001 and Beyond Environmental Management Systems in the Real World.
- MoEUB. (2020e). Cleaner Production Practices in Specific Sectors Project. T.R. Ministry of Environment, Urbanization and Climate Change, General Directorate of Environmental Management.
- Delmas, M. (2009). Erratum to "Stakeholders and Competitive Advantage: The Case of ISO 14001. doi:10.1111/j.1937-5956.2004.tb00226.x.
- DEPA. (2002). Danish Environmental Protection Agency (DEPA). Danish Experience, Best Avaible Techniques-Bat in the Clothing and Textile Industry.
- Hutchens Jr., S. (2017). Using ISO 9001 or ISO 14001 to Gain a Competitive Advantage.
- IPPC BREF. (2003). Reference Document on Best Available Techniques for the Textiles Industry. Retrieved from https://eippcb.jrc.ec.europa.eu/reference
- IPPC BREF. (2006). European Commission (EC) Integrated Pollution Prevention and Control Reference Document on Best Available Techniques for the Surface Treatment of Metals and Plastics.
- IPPC BREF. (2019). Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. https://eippcb.jrc.ec.europa.eu/reference.
- ISO 14001 User Manual. (2015). Generic ISO 14001 EMS Templates User Manual.
- Kuprasertwong, N., Padungwatanaroj, O., Robin, A., Udomwong, K., Tula, A., Zhu, L., . . . Ghani, R. (2021). Computer-Aided Refrigerant Design: New Developments.
- LCPC. (2010). Lebanese Cleaner Production Center. Cleaner Production Guide for Textile Industries.
- Oğur, R., Tekbaş, Ö. F., & Hasde, M. (2004). Chlorination Guide: Chlorination of Drinking and Potable Water. Ankara: Gülhane Military Medical Academy, Department of Public Health.
- Özdemir, K., & Toröz, I. (2010). Monitoring of Chlorination By-Products in Drinking Water Sources by Differential UV Spectroscopy Method. Itujournal.
- Ozturk, E. (2014). Integrated Pollution Prevention and Control and Cleaner Production Practices in the Textile Industry. Isparta.
- Potoski, M., & Prakash, A. (2005). Green Clubs and Voluntary Governance: ISO 14001 and Firms' Regulatory Compliance. American Journal of Political Science, 235-248.
- Singh, M., Liang, L., Basu, A., Belsan, M., Hallsby, G., & Morris, W. (2014). 3D TRASAR™ Technologies for Reliable Wastewater Recycling and Reuse. doi:10.1016/B978-0-08-099968-5.00011-8.
- Sahin, N. I. (2010). Water conservation in buildings. Istanbul Technical University, Institute of Natural and Applied Sciences, M.Sc. Thesis.
- Tanık, A., Öztürk, İ., & Cüceloğlu, G. (2015). Reuse of Treated Wastewater and Rainwater Harvesting Systems (Handbook). Ankara: Union of Municipalities of Turkey.
- TOB. (2021). Technical Assistance for Economic Analysis and Water Efficiency Studies within the Scope of River Basin Management Plans in 3 Pilot Basins. T.R. Ministry of Agriculture and Forestry.
- TUBITAK MAM. (2016). Determination of Cleaner Production Opportunities and Applicability in Industry (SANVER) Project, Final Report. The Scientific and Technological Research Council of Turkey Marmara Research Center.
- Yaman, C. (2009). Siemens Gebze Facilities Green Building. IX. National Plumbing Engineering Congress.

Resitpasa Mah Katar Cd. Arı Teknokent 1 2/5, D:12, 34469 Sariyer/Istanbul

(0212) 276 65 48

www.iocevre.com